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We’ll start by focusing on the process of mapping a natural language description 
into a concrete optimization model.

Auto-Formulation

Understand 
Decision 
Making 

Problem 

Translate into 
Optimization 

Model 

Tune for 
Efficiency 

Validate the 
Optimization 

Model 



Roadmap

LLMs x CP
Why combine LLMs and 

Optimization Solvers?

Agentic Frameworks
How far can we push LLMs out of the box 

in formulation?

Model Fine Tuning
Can we fine-tune models for 

auto-formulation?

Evaluation
How do we verify formulations 

are correct?

What’s next?
Open research questions



“I Want it That Way”: Leveraging LLMs and 
Constraint Programming for Interactive Decision 
Support

Connor Lawless, Jakob Schoeffer, Lindy Le, Kael Rowan, Shilad Sen, 
Cristina St Hill, Jina Suh, Bahar Sarrafzadeh
ACM Transactions of Intelligent and Interactive Systems



Meeting Scheduling is tough!

Finding a time for a meeting can be a drain, but current smart assistants (i.e. like 
Outlook’s time suggestions) are barely used… even when they give a good suggestion!

13% 32% 7.5%

*Statistics courtesy of Jie Fan and the associated report by Kelsey Merlo at Microsoft



Meeting Scheduling is tough!

Users can feel frustrated by the lack of control and resort to manually scheduling.

I don’t trust time suggestions because they tend to not give me enough 
information or control to do things like adhere to meeting-free Friday.

I think insights into how to relax scheduling constraints would be helpful in 
making the meeting.

I would find it helpful to tweak time suggestions to my need and have all 
the information available that I need.

*Quotes taken from previous studies on meeting scheduling run by Bahar Sarrafzadeh and the OAR team at MSR.



User Preferences are Diverse

To capture the diversity of user preferences we ran a diary study (>100 participants) 
to collect users in the moment scheduling preferences and constraints .

Schedule a 30-minute meeting with [coworker and I] within the next two 
business days. I would assume, without actually saying it in the chat, that 
CoPilot knows that we are in the same time zone, that we work normal 
business hours, holidays are observed, and not to schedule it during 
lunch hours. Also, I would assume that it knows that we work in the 
same building and that we both work hybrid (work from home 
sometimes), so that if we are both going to be at work at the same time, 
then a small conference room would be preferrable



Current Systems 

Current graphical interfaces do not have the flexibility to capture these preferences.



Can we leverage LLMs and OR to enable 
personalized meeting scheduling models? 



GPT-4 – Problem Solved?



GPT-4 – Problem Solved? Not quite!

Initial experiments showed GPT-4 has trouble solving constraint satisfaction problems!*
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Experiment Details
• 10 synthetic scheduling scenarios with 

2-8 participants
• 3 given constraints

• Meet 11-3pm
• No Meeting Fridays
• Prefer to meet Tuesday or Thursday

• Evaluate based on how many constraints 
(including user attendance) proposed 
time meets

*See: ‘Attention Satisfies: A Constraint 
Satisfaction Lens on Factual Errors of 
Language Models’ Yuksekgonul et al. 2024



Similar Idea: Let the LLMs solve the optimization problem directly!

LLMs as Optimizers

Large Language Models as Optimizers. Yang et al. ICLR 2024



Constraint Programming

Constraint Programming (Rossi et al., 2006) is a general optimization framework 
that grades a candidate solution by evaluating and weighing multiple functions.

Variables and Domain
What we can change (variable) and 

allowable values (domain)

Constraints
Functions that map from a variable 

setting to a score.

Objective
The goal is to find the variable 

settings that maximize the score.
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allowable values (domain)
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Objective
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settings that maximize the score.

The variable is the meeting time, and the domain is the set of time 
blocks of correct duration in the time horizon (i.e. next 2 weeks)

Constraints could be any user preference or meeting requirement (i.e. 
user is available) and a score is an importance of the constraint.

Our goal is to find the ‘best’ time(s).



Constraint Programming

Constraint Programming (Rossi et al., 2006) is a general optimization framework 
that grades a candidate solution by evaluating and weighing multiple functions.

Variables and Domain
What we can change (variable) and 

allowable values (domain)

Constraints
Functions that map from a variable 

setting to a score.

Objective
The goal is to find the variable 

settings that maximize the score.

The variable is the meeting time, and the domain is the set of time 
blocks of correct duration in the time horizon (i.e. next 2 weeks)

Constraints could be any user preference or meeting requirement (i.e. 
user is available) and a score is an importance of the constraint.

Our goal is to find the ‘best’ time(s).

Not known a priori!



LLMs x Constraint Programming

We introduced a hybrid LLM and optimization system to enable non-expert users 
build custom constraint programming models..
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NL Query Python f
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LLMs for Constraint Generation

We use LLMs as a flexible tool to convert natural language constraints into code.



Disclaimer!
In our setting, solving the CP problem can be 
solved by enumeration in under a second.



Initial Hybrid Experiment Results

Initial results show that using GPT-4 to generate python functions for natural language 
constraints seems to be able to achieve human-level performance!

Experiment Details
• 10 synthetic scheduling scenarios with 

2-8 participants
• 3 given constraints

• Meet 11-3pm
• No Meeting Fridays
• Prefer to meet Tuesday or Thursday

• Evaluate based on how many constraints 
(including user attendance) proposed 
time meets
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Quantitative Evaluation

We benchmarked two LLMs on a new dataset constructed from our diary study to 
quantitatively evaluate the feasibility of LLMs in constraint generation.

*Precision and Recall computed based on running constraint code on sample times and comparing output to ground-truth 
‘correct’ implementations of the constraints.



Meet MeetMate

https://meetmate.z5.web.core.windows.net/


User Study

We evaluated the broader system via a user study with a prototype the system to:
(i) Characterize preference construction in situ with dynamic recommendations 
(ii) Gauge usability of overall system to inform future design recommendations.

We recruited 10 participants to each do a 1 hour study session with researchers.



User Study: Takeaways

Easy to Use & Flexible
Users really enjoyed the 

flexibility and the 
responsiveness of the system 

to new user preferences.

Hard to Debug!
Since users did not 

understand the underlying 
model, it was hard to correct 

when things went wrong.

Chat is Burdensome
For more complicated 
settings, users found it 

annoying to specify 
everything by chat.

Interactive opt. systems are promising, but have some tough HCI challenges!



Constraint Programming x LLMs

There’s a ton of work on auto-formulation of constraint programming models that parallels our tutorial:

Holy Grail 2.0: From Natural Language to Constraint Models
Tsouros, Verhaeghe, Kadioglu, Guns. Preprint (2023)

Ner4opt: Named entity recognition for optimization modelling from natural language
Dakle, Kadioglu, Uppuluri, Politi, Raghavan,Rallabandi, and Srinivasamurthy. CPAIOR (2023), Constraints (2024)

CP-bench: Evaluating large language models for constraint modelling
Michailidis, Tsouros, and Guns. Preprint (2025)

GALA: Global LLM Agents for Text-to-Model Translation
Cai, Kadioglu, and Dilkina. Preprint (2025)

CP-agent: Agentic constraint programming
Szeider. Preprint (2025)



Beyond Meeting Scheduling

Iteratively eliciting modeling details to refine a solution is a feature of applied OR! 

Power Systems School Zoning Hospital Scheduling



OptiMUS

The same principles of MeetMate underpin more general systems for modelling 
MILP problems. 

OptiMUS-0.3: Using Large Language Models to Model and Solve Optimization Problems at Scale
AhmadiTeshnizi, Gao, Brunborg, Talaei, Lawless, and Udell. Major Revision at Management Science

Try it out yourself: https://optimus-solver.com/

Extract 
Parameters

Extract 
Targets

Formulate 
In Math

Implement in 
Python

Execute + 
Debug

Variables Constraints ObjectiveTargets











OptiMUS uses a number of methodological tricks to improve scalability:

OptiMUS: Special Sauce

Expert Crafted Error Correction Modules
Custom prompts for common errors made during modeling.

Iterative Debugging Loops 
LLMs are given error messages from run code and allowed to fix.

Exploit (Simple) Optimization Structure
Check whether a given formulation has exploitable structure.



Expert-crafted prompts aim to correct common modelling mistakes.

Error Correction



Identifying Special Problems 

OptiMUS maintains a pool of well-studied problems with specialized solvers.



Identifying SOS constraints in facility location problems can accelerate solve times.

Case Study: SOS Constraints



A ton of work over the past few years has focused on generating good datasets for 
model formulation (i.e., with natural language descriptions + final answer).

Experiments: Datasets

Note:
● Many of these problems are still extremely toy (something we would give an 

undergrad)!
● Not all datasets are correct*, contain comprehensive elements (e.g., code)

*Toward a trustworthy optimization modeling agent via verifiable synthetic data generation
Lima, Hwang, Phan, Klein, Liu, & Yeo. arXiv Preprint.



Takeaways: Decomposition frameworks out-perform LLMs alone (especially with 
cheaper models).

Experiments: Results

Execution Accuracy
#s in the table correspond 
to fraction of instances that 

run and have the same 
optimal value.



Takeaways: Debugging and error correction help a lot!

Experiments: Results



We hope OptiMUS will serve as a framework for supporting future research on 
auto-formulation:

Open-Source Resources



We hope OptiMUS will serve as a framework for supporting future research on 
auto-formulation:

Open-Source Resources



Key Idea: Structured exploration of formulations via Monte-Carlo Tree Search.

Advanced Search Strategies

Autoformulation of Mathematical Optimization Models Using LLMs. Astorga, et al. ICML (2025)



Can we fine-tune an LLM to improve its 
modeling capabilities?



Fine-tuning has been an effective tool at specializing LLMs for specific tasks, but: 

Challenges with Fine-Tuning for Optimization

Insufficient data for fine-tuning
Existing optimization datasets like MIPLIB or NL4OPT are 
small-scale or do not have text data.

Existing test sets are homogeneous 
Most benchmarking datasets focus on simpler ‘textbook-style’ 
LP questions.

Many datasets have critical quality issues!
See examples in Lima et al. (2025), or Chen et al. (2025)



ORLM: A Customizable Framework in Training Large
Models for Automated Optimization Modeling

Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge, 
Benyou Wang, Zizhuo Wang

Operations Research



Criteria for Synthetic Data 

Comprehensive Coverage
Should cover different applications, modeling techniques, and difficulty.

Environment Adaptability
Dataset should include dynamic changes to reflect practice.

Linguistic Diversity
Dataset should reflect variability in how to phrase a problem.

Technique Variability
There are different ways of modeling the same problem!



OR-Instruct: A Framework for Synthetic Data Gen.

OR-Instruct employs two key strategies (augmentation + expansion) to create a 
dataset for fine-tuning.



OR-Instruct: A Framework for Synthetic Data Gen.

OR-Instruct employs two key strategies (augmentation + expansion) to create a 
dataset for fine-tuning.

Start with 686 real-world industry cases 
collected from some OR textbooks and our 

previous industrial project



Strategy 1: Expansion

The first strategy involves creating new problems via prompting GPT-4o.

Start with 100 Scenarios 
generated by GPT-4o of 
where optimization is 

applied



Strategy 1: Expansion

The first strategy involves creating new problems via prompting GPT-4o.

Combine 1 scenario with 3 
existing examples as 
in-context examples
(2 seed, 1 synthetic)



Strategy 1: Expansion

The first strategy involves creating new problems via prompting GPT-4o.

Output new training 
example with (i) 

question (ii) model, 
and (iii) code



Strategy 1: Expansion

The first strategy involves creating new problems via prompting GPT-4o.

Challenge: Resulting dataset doesn’t exhibit diversity in problem difficulty (skews 
towards easier problems)



Strategy 2: Augmentation

The second strategy involves tweaking existing problems from the seed dataset (can 
include hard problems!)



Altering Objective and Constraints

Prompts GPT-4o to add new constraints or alter the objective:



Rephrasing Question

Prompts GPT-4o to rephrase problems to promote linguistic diversity:



Incorporate Multiple Modeling Techniques

Prompts GPT-4o to use different modeling techniques for the same problem:



OR-Instruct: A Framework for Synthetic Data Gen.

OR-Instruct employs two key strategies (augmentation + expansion) to create a 
dataset for fine-tuning.

Filter out problems that do not have code that 
runs, are duplicated in the dataset, or are too 

similar to evaluation dataset.



OR-Instruct: A Framework for Synthetic Data Gen.

OR-Instruct employs two key strategies (augmentation + expansion) to create a 
dataset for fine-tuning.

Challenge: Correctness of synthetic data is between 70-75%!



Data Generation Results

OR-Instruct run with just 686 seed cases can generate 32K+ diverse optimization 
problems:



Takeaways: Debugging and error correction help a lot!

Experiments: Fine-tuning

Takeaways
Fine-tuning can improve 

performance of 
open-source models!



Takeaways: Humans working with ORLM (group B) outperform humans alone 
(Group A) in terms of both of solution time and accuracy!

Experiments: Results



Key Idea: Combine structured data + SFT + model alignment to improve performance.

LLMOPT

LLMOPT: Learning to 
define and solve 

optimization problems 
from scratch

Jian et al.. ICLR (2025)



How can we improve the quality of training 
data?



Generate natural language from an existing optimization model so we can verify 
whether the pipeline produced the right intermediary representations.

Verifiable Synthetic Data Generation

*Toward a trustworthy optimization modeling agent via verifiable synthetic data generation
Lima, Hwang, Phan, Klein, Liu, & Yeo. arXiv Preprint.



Another approach is to use optimization experts to identify common mistakes and 
correct the training data directly.

Data Cleaning via Expert-Guided Prompts

OPTIMIND: Teaching 
LLMs to Think like 

Optimization Experts
Chen et al.. arXiv Preprint.



Open Questions

There’s been exciting progress on auto-formulation, but there’s a ton more work to do!

Model Strength
Current work hasn’t focused 
on developing strong MILP 

formulations!

More data!
ML thrives on data - help 
us collect more problems 

in natural language!

Decomposition Algorithms
Can we move beyond a 
one-shot formulation?



How can we check whether two MILP 
formulations are equivalent? 



Formulation Equivalence

We are given two (MI)LP optimization problems:

Reference Problem Generated Problem

Optimal Solution:

Feasible Region:

Optimal Solution:

Feasible Region:

Goal (inf.): Check that the two formulations solve the same optimization problem



Canonical Accuracy

Take 1: Check whether the two formulations are the same element by element:

Canonical Accuracy: Do both formulations have the same constraint matrix and 
objective?

NL4OPT Competition: Formulating Optimization Problems from Natural Language. 
Ramamonjison et al.. NeurIPS Competition Track 2022.

Any problems?



Canonical Accuracy

Take 1: Check whether the two formulations are the same element by element:

Canonical Accuracy: Do both formulations have the same constraint matrix and 
objective?

NL4OPT Competition: Formulating Optimization Problems from Natural Language. 
Ramamonjison et al.. NeurIPS Competition Track 2022.

Problem 1: 

Sensitive to Variable or Constraint Permutations!



Execution Accuracy

Take 2: Are the final objective values the same?

OptiMUS-0.3: Using Large Language Models to Model and Solve Optimization Problems at Scale. 
AhmadiTeshnizi et al. Major Revision at Management Science.

Any problems?

Execution Accuracy: Do both formulations have the same optimal objective value?



Execution Accuracy

Problem 2: Sensitive to re-scaling! Re-scaling an optimization problem leads to 
semantically identical problems but breaks metrics like execution accuracy. 

Model 1
Total 

Revenue

Model 2
Average 

Revenue per 
unit land

More broadly, the metric is independent of the actual solution value (e.g., you have a 50% chance of 
being correct for every SAT problem!)



Graph Edit Distance

Take 3: Do the formulations have an equivalent graph structure?

Towards human-aligned evaluation for linear programming word problems. 
Xing et al.  LREC-COLING (2024)

Any problems?

Graph Edit Distance: Represent both formulations as bi-partite graphs and then 
compute the graph edit distance between the two formulations.



Graph Edit Distance

Problem 3: Sensitive to simply strengthening or re-formulating the problem.

Model 1
Base

Model 2
Strengthened

Pitfall:
● Models same problem
● Arbitrarily large 

difference in number of 
constraints (i.e., bad 
graph edit distance, 
canonical accuracy)

● Similar examples for 
number of variables (e.g., 
column generation)



EquivaMap: Leveraging LLMs for Automatic Equivalence 
Checking of Optimization Formulations
ICML 2025

Haotian  Zhai, Connor Lawless, Ellen Vitercik, Leqi Liu



Karp Reduction

In complexity theory, we can prove that two decision problems are equivalent if we 
can find a reduction between them.

Decision 
Problem P

Decision 
Problem Q



Quasi -Karp Equivalence

Inspired by Karp Reductions we introduce a formal criterion to check whether two 
MILP formulations are equivalent:

Optimization 
Problem alpha’

Optimal for 
Problem alpha?

Optimal 
Solution

Mapped Optimal 
Solution



Quasi -Karp Equivalence

Model 1
Total 
Land

Model 2
Fraction of 

Land

Mapping 
from 2 to 1

Consider a simple example where f is a linear function:

Example:



Quasi -Karp Equivalence

Model 1
Total 
Land

Model 2
Fraction of 

Land

Mapping 
from 2 to 1

Consider a simple example where f is a linear function:

Example:

Feasible: Yes
Optimality Gap: 0



EquivaMap

Key Idea: Use a LLM to generate the mapping function 

Reference Problem

Generated Problem

LLM

Solver

Mapper

Gen. Solution

Mapped Sol.



Why is this reasonable?

Huh? We’re using a LLM to check if an LLM can formulate an optimization problem?

Verifiable
If we find a mapping, and the 

mapped solution is optimal and 
feasible we have verification! We 
don’t need to depend on the LLM 

being correct every time.

Flexible Output Format
While ideally we would want 

some closed form mapping, for 
mapping an optimal solution we 
can also generate this mapping 

in a ‘code’ space

Simpler Problem
Mapping between variables is 

much easier than checking 
equivalence! Rich natural 

language information available 
to help.



Evaluation

We introduce a new 
dataset with a set of 
predefined 
equivalent and 
nonequivalent 
formulations.



EquivaMap Results

Takeaway: EquivaMap correctly verifies formulation equivalence across settings 
where existing heuristics break down



Open Questions

EquivaMap works great for simple transformations, but there’s a ton more work to do!

Constraint Verification
Some constraints aren’t tight at 
optimality? How can we verify 

they’re still implemented correctly?

Automated Complexity Proofs
Can we push the same 

algorithmic ideas to help do 
automated proofs?

Verification without Labels
What if we don’t have a 

ground-truth ‘correct’ formulation? 
Can we reliably verify models 

based on NL?



Takeaways

Modeling is a barrier to access optimization tools!
Domain experts often do not have expertise to model problems.

LLMs (with the right framework) can model optimization problems!
LLMs can bridge expertise gaps in modeling CP and MILP problems.

More work to do!
LLMs still struggle to model complex problems and can be difficult to trust… 

open-source tools like OptiMUS and ORLM can promote future research!



Thanks! Questions?


