
Model Formulation
Modeling Optimization Problems via Generative AI
Connor Lawless, Stanford University
AAAI 2026 | January 20th, 2025

We’ll start by focusing on the process of mapping a natural language description
into a concrete optimization model.

Auto-Formulation

Understand
Decision
Making

Problem 

Translate into
Optimization

Model 

Tune for
Efficiency 

Validate the
Optimization

Model 

Roadmap

LLMs x CP
Why combine LLMs and

Optimization Solvers?

Agentic Frameworks
How far can we push LLMs out of the box

in formulation?

Model Fine Tuning
Can we fine-tune models for

auto-formulation?

Evaluation
How do we verify formulations

are correct?

What’s next?
Open research questions

“I Want it That Way”: Leveraging LLMs and
Constraint Programming for Interactive Decision
Support

Connor Lawless, Jakob Schoeffer, Lindy Le, Kael Rowan, Shilad Sen,
Cristina St Hill, Jina Suh, Bahar Sarrafzadeh
ACM Transactions of Intelligent and Interactive Systems

Meeting Scheduling is tough!

Finding a time for a meeting can be a drain, but current smart assistants (i.e. like
Outlook’s time suggestions) are barely used… even when they give a good suggestion!

13% 32% 7.5%

*Statistics courtesy of Jie Fan and the associated report by Kelsey Merlo at Microsoft

Meeting Scheduling is tough!

Users can feel frustrated by the lack of control and resort to manually scheduling.

I don’t trust time suggestions because they tend to not give me enough
information or control to do things like adhere to meeting-free Friday.

I think insights into how to relax scheduling constraints would be helpful in
making the meeting.

I would find it helpful to tweak time suggestions to my need and have all
the information available that I need.

*Quotes taken from previous studies on meeting scheduling run by Bahar Sarrafzadeh and the OAR team at MSR.

User Preferences are Diverse

To capture the diversity of user preferences we ran a diary study (>100 participants)
to collect users in the moment scheduling preferences and constraints .

Schedule a 30-minute meeting with [coworker and I] within the next two
business days. I would assume, without actually saying it in the chat, that
CoPilot knows that we are in the same time zone, that we work normal
business hours, holidays are observed, and not to schedule it during
lunch hours. Also, I would assume that it knows that we work in the
same building and that we both work hybrid (work from home
sometimes), so that if we are both going to be at work at the same time,
then a small conference room would be preferrable

Current Systems

Current graphical interfaces do not have the flexibility to capture these preferences.

Can we leverage LLMs and OR to enable
personalized meeting scheduling models?

GPT-4 – Problem Solved?

GPT-4 – Problem Solved? Not quite!

Initial experiments showed GPT-4 has trouble solving constraint satisfaction problems!*
N

o
rm

al
iz

ed
 C

o
ns

tr
ai

nt
 S

at
is

fa
ct

io
n

%

Optimal
(CP Solver)

GPT-4
Native

68%

100%
Experiment Details
• 10 synthetic scheduling scenarios with

2-8 participants
• 3 given constraints

• Meet 11-3pm
• No Meeting Fridays
• Prefer to meet Tuesday or Thursday

• Evaluate based on how many constraints
(including user attendance) proposed
time meets

*See: ‘Attention Satisfies: A Constraint
Satisfaction Lens on Factual Errors of
Language Models’ Yuksekgonul et al. 2024

Similar Idea: Let the LLMs solve the optimization problem directly!

LLMs as Optimizers

Large Language Models as Optimizers. Yang et al. ICLR 2024

Constraint Programming

Constraint Programming (Rossi et al., 2006) is a general optimization framework
that grades a candidate solution by evaluating and weighing multiple functions.

Variables and Domain
What we can change (variable) and

allowable values (domain)

Constraints
Functions that map from a variable

setting to a score.

Objective
The goal is to find the variable

settings that maximize the score.

Constraint Programming

Constraint Programming (Rossi et al., 2006) is a general optimization framework
that grades a candidate solution by evaluating and weighing multiple functions.

Variables and Domain
What we can change (variable) and

allowable values (domain)

Constraints
Functions that map from a variable

setting to a score.

Objective
The goal is to find the variable

settings that maximize the score.

The variable is the meeting time, and the domain is the set of time
blocks of correct duration in the time horizon (i.e. next 2 weeks)

Constraints could be any user preference or meeting requirement (i.e.
user is available) and a score is an importance of the constraint.

Our goal is to find the ‘best’ time(s).

Constraint Programming

Constraint Programming (Rossi et al., 2006) is a general optimization framework
that grades a candidate solution by evaluating and weighing multiple functions.

Variables and Domain
What we can change (variable) and

allowable values (domain)

Constraints
Functions that map from a variable

setting to a score.

Objective
The goal is to find the variable

settings that maximize the score.

The variable is the meeting time, and the domain is the set of time
blocks of correct duration in the time horizon (i.e. next 2 weeks)

Constraints could be any user preference or meeting requirement (i.e.
user is available) and a score is an importance of the constraint.

Our goal is to find the ‘best’ time(s).

Not known a priori!

LLMs x Constraint Programming

We introduced a hybrid LLM and optimization system to enable non-expert users
build custom constraint programming models..

NL Query Python f
NL Query Python f

NL Query Python f

Prioritized Constraint List
Add Constraint

CP Solver

Constraint
Manager

User

Chat

Delete Constraint

Change Priority

Generate Suggestion

Message User
System

A

B
C

D

LLMs for Constraint Generation

We use LLMs as a flexible tool to convert natural language constraints into code.

Disclaimer!
In our setting, solving the CP problem can be
solved by enumeration in under a second.

Initial Hybrid Experiment Results

Initial results show that using GPT-4 to generate python functions for natural language
constraints seems to be able to achieve human-level performance!

Experiment Details
• 10 synthetic scheduling scenarios with

2-8 participants
• 3 given constraints

• Meet 11-3pm
• No Meeting Fridays
• Prefer to meet Tuesday or Thursday

• Evaluate based on how many constraints
(including user attendance) proposed
time meets

N
o

rm
al

iz
ed

 C
o

ns
tr

ai
nt

 S
at

is
fa

ct
io

n
%

Optimal
(CP Solver)

GPT-4
Native

CP Solver +
GPT-4 Constraints

68%

100% 100%

Quantitative Evaluation

We benchmarked two LLMs on a new dataset constructed from our diary study to
quantitatively evaluate the feasibility of LLMs in constraint generation.

*Precision and Recall computed based on running constraint code on sample times and comparing output to ground-truth
‘correct’ implementations of the constraints.

Meet MeetMate

https://meetmate.z5.web.core.windows.net/

User Study

We evaluated the broader system via a user study with a prototype the system to:
(i) Characterize preference construction in situ with dynamic recommendations
(ii) Gauge usability of overall system to inform future design recommendations.

We recruited 10 participants to each do a 1 hour study session with researchers.

User Study: Takeaways

Easy to Use & Flexible
Users really enjoyed the

flexibility and the
responsiveness of the system

to new user preferences.

Hard to Debug!
Since users did not

understand the underlying
model, it was hard to correct

when things went wrong.

Chat is Burdensome
For more complicated
settings, users found it

annoying to specify
everything by chat.

Interactive opt. systems are promising, but have some tough HCI challenges!

Constraint Programming x LLMs

There’s a ton of work on auto-formulation of constraint programming models that parallels our tutorial:

Holy Grail 2.0: From Natural Language to Constraint Models
Tsouros, Verhaeghe, Kadioglu, Guns. Preprint (2023)

Ner4opt: Named entity recognition for optimization modelling from natural language
Dakle, Kadioglu, Uppuluri, Politi, Raghavan,Rallabandi, and Srinivasamurthy. CPAIOR (2023), Constraints (2024)

CP-bench: Evaluating large language models for constraint modelling
Michailidis, Tsouros, and Guns. Preprint (2025)

GALA: Global LLM Agents for Text-to-Model Translation
Cai, Kadioglu, and Dilkina. Preprint (2025)

CP-agent: Agentic constraint programming
Szeider. Preprint (2025)

Beyond Meeting Scheduling

Iteratively eliciting modeling details to refine a solution is a feature of applied OR!

Power Systems School Zoning Hospital Scheduling

OptiMUS

The same principles of MeetMate underpin more general systems for modelling
MILP problems.

OptiMUS-0.3: Using Large Language Models to Model and Solve Optimization Problems at Scale
AhmadiTeshnizi, Gao, Brunborg, Talaei, Lawless, and Udell. Major Revision at Management Science

Try it out yourself: https://optimus-solver.com/

Extract
Parameters

Extract
Targets

Formulate
In Math

Implement in
Python

Execute +
Debug

Variables Constraints ObjectiveTargets

OptiMUS uses a number of methodological tricks to improve scalability:

OptiMUS: Special Sauce

Expert Crafted Error Correction Modules
Custom prompts for common errors made during modeling.

Iterative Debugging Loops
LLMs are given error messages from run code and allowed to fix.

Exploit (Simple) Optimization Structure
Check whether a given formulation has exploitable structure.

Expert-crafted prompts aim to correct common modelling mistakes.

Error Correction

Identifying Special Problems

OptiMUS maintains a pool of well-studied problems with specialized solvers.

Identifying SOS constraints in facility location problems can accelerate solve times.

Case Study: SOS Constraints

A ton of work over the past few years has focused on generating good datasets for
model formulation (i.e., with natural language descriptions + final answer).

Experiments: Datasets

Note:
● Many of these problems are still extremely toy (something we would give an

undergrad)!
● Not all datasets are correct*, contain comprehensive elements (e.g., code)

*Toward a trustworthy optimization modeling agent via verifiable synthetic data generation
Lima, Hwang, Phan, Klein, Liu, & Yeo. arXiv Preprint.

Takeaways: Decomposition frameworks out-perform LLMs alone (especially with
cheaper models).

Experiments: Results

Execution Accuracy
#s in the table correspond
to fraction of instances that

run and have the same
optimal value.

Takeaways: Debugging and error correction help a lot!

Experiments: Results

We hope OptiMUS will serve as a framework for supporting future research on
auto-formulation:

Open-Source Resources

We hope OptiMUS will serve as a framework for supporting future research on
auto-formulation:

Open-Source Resources

Key Idea: Structured exploration of formulations via Monte-Carlo Tree Search.

Advanced Search Strategies

Autoformulation of Mathematical Optimization Models Using LLMs. Astorga, et al. ICML (2025)

Can we fine-tune an LLM to improve its
modeling capabilities?

Fine-tuning has been an effective tool at specializing LLMs for specific tasks, but:

Challenges with Fine-Tuning for Optimization

Insufficient data for fine-tuning
Existing optimization datasets like MIPLIB or NL4OPT are
small-scale or do not have text data.

Existing test sets are homogeneous
Most benchmarking datasets focus on simpler ‘textbook-style’
LP questions.

Many datasets have critical quality issues!
See examples in Lima et al. (2025), or Chen et al. (2025)

ORLM: A Customizable Framework in Training Large
Models for Automated Optimization Modeling

Chenyu Huang, Zhengyang Tang, Shixi Hu, Ruoqing Jiang, Xin Zheng, Dongdong Ge,
Benyou Wang, Zizhuo Wang

Operations Research

Criteria for Synthetic Data

Comprehensive Coverage
Should cover different applications, modeling techniques, and difficulty.

Environment Adaptability
Dataset should include dynamic changes to reflect practice.

Linguistic Diversity
Dataset should reflect variability in how to phrase a problem.

Technique Variability
There are different ways of modeling the same problem!

OR-Instruct: A Framework for Synthetic Data Gen.

OR-Instruct employs two key strategies (augmentation + expansion) to create a
dataset for fine-tuning.

OR-Instruct: A Framework for Synthetic Data Gen.

OR-Instruct employs two key strategies (augmentation + expansion) to create a
dataset for fine-tuning.

Start with 686 real-world industry cases
collected from some OR textbooks and our

previous industrial project

Strategy 1: Expansion

The first strategy involves creating new problems via prompting GPT-4o.

Start with 100 Scenarios
generated by GPT-4o of
where optimization is

applied

Strategy 1: Expansion

The first strategy involves creating new problems via prompting GPT-4o.

Combine 1 scenario with 3
existing examples as
in-context examples
(2 seed, 1 synthetic)

Strategy 1: Expansion

The first strategy involves creating new problems via prompting GPT-4o.

Output new training
example with (i)

question (ii) model,
and (iii) code

Strategy 1: Expansion

The first strategy involves creating new problems via prompting GPT-4o.

Challenge: Resulting dataset doesn’t exhibit diversity in problem difficulty (skews
towards easier problems)

Strategy 2: Augmentation

The second strategy involves tweaking existing problems from the seed dataset (can
include hard problems!)

Altering Objective and Constraints

Prompts GPT-4o to add new constraints or alter the objective:

Rephrasing Question

Prompts GPT-4o to rephrase problems to promote linguistic diversity:

Incorporate Multiple Modeling Techniques

Prompts GPT-4o to use different modeling techniques for the same problem:

OR-Instruct: A Framework for Synthetic Data Gen.

OR-Instruct employs two key strategies (augmentation + expansion) to create a
dataset for fine-tuning.

Filter out problems that do not have code that
runs, are duplicated in the dataset, or are too

similar to evaluation dataset.

OR-Instruct: A Framework for Synthetic Data Gen.

OR-Instruct employs two key strategies (augmentation + expansion) to create a
dataset for fine-tuning.

Challenge: Correctness of synthetic data is between 70-75%!

Data Generation Results

OR-Instruct run with just 686 seed cases can generate 32K+ diverse optimization
problems:

Takeaways: Debugging and error correction help a lot!

Experiments: Fine-tuning

Takeaways
Fine-tuning can improve

performance of
open-source models!

Takeaways: Humans working with ORLM (group B) outperform humans alone
(Group A) in terms of both of solution time and accuracy!

Experiments: Results

Key Idea: Combine structured data + SFT + model alignment to improve performance.

LLMOPT

LLMOPT: Learning to
define and solve

optimization problems
from scratch

Jian et al.. ICLR (2025)

How can we improve the quality of training
data?

Generate natural language from an existing optimization model so we can verify
whether the pipeline produced the right intermediary representations.

Verifiable Synthetic Data Generation

*Toward a trustworthy optimization modeling agent via verifiable synthetic data generation
Lima, Hwang, Phan, Klein, Liu, & Yeo. arXiv Preprint.

Another approach is to use optimization experts to identify common mistakes and
correct the training data directly.

Data Cleaning via Expert-Guided Prompts

OPTIMIND: Teaching
LLMs to Think like

Optimization Experts
Chen et al.. arXiv Preprint.

Open Questions

There’s been exciting progress on auto-formulation, but there’s a ton more work to do!

Model Strength
Current work hasn’t focused
on developing strong MILP

formulations!

More data!
ML thrives on data - help
us collect more problems

in natural language!

Decomposition Algorithms
Can we move beyond a
one-shot formulation?

How can we check whether two MILP
formulations are equivalent?

Formulation Equivalence

We are given two (MI)LP optimization problems:

Reference Problem Generated Problem

Optimal Solution:

Feasible Region:

Optimal Solution:

Feasible Region:

Goal (inf.): Check that the two formulations solve the same optimization problem

Canonical Accuracy

Take 1: Check whether the two formulations are the same element by element:

Canonical Accuracy: Do both formulations have the same constraint matrix and
objective?

NL4OPT Competition: Formulating Optimization Problems from Natural Language.
Ramamonjison et al.. NeurIPS Competition Track 2022.

Any problems?

Canonical Accuracy

Take 1: Check whether the two formulations are the same element by element:

Canonical Accuracy: Do both formulations have the same constraint matrix and
objective?

NL4OPT Competition: Formulating Optimization Problems from Natural Language.
Ramamonjison et al.. NeurIPS Competition Track 2022.

Problem 1:

Sensitive to Variable or Constraint Permutations!

Execution Accuracy

Take 2: Are the final objective values the same?

OptiMUS-0.3: Using Large Language Models to Model and Solve Optimization Problems at Scale.
AhmadiTeshnizi et al. Major Revision at Management Science.

Any problems?

Execution Accuracy: Do both formulations have the same optimal objective value?

Execution Accuracy

Problem 2: Sensitive to re-scaling! Re-scaling an optimization problem leads to
semantically identical problems but breaks metrics like execution accuracy.

Model 1
Total

Revenue

Model 2
Average

Revenue per
unit land

More broadly, the metric is independent of the actual solution value (e.g., you have a 50% chance of
being correct for every SAT problem!)

Graph Edit Distance

Take 3: Do the formulations have an equivalent graph structure?

Towards human-aligned evaluation for linear programming word problems.
Xing et al. LREC-COLING (2024)

Any problems?

Graph Edit Distance: Represent both formulations as bi-partite graphs and then
compute the graph edit distance between the two formulations.

Graph Edit Distance

Problem 3: Sensitive to simply strengthening or re-formulating the problem.

Model 1
Base

Model 2
Strengthened

Pitfall:
● Models same problem
● Arbitrarily large

difference in number of
constraints (i.e., bad
graph edit distance,
canonical accuracy)

● Similar examples for
number of variables (e.g.,
column generation)

EquivaMap: Leveraging LLMs for Automatic Equivalence
Checking of Optimization Formulations
ICML 2025

Haotian Zhai, Connor Lawless, Ellen Vitercik, Leqi Liu

Karp Reduction

In complexity theory, we can prove that two decision problems are equivalent if we
can find a reduction between them.

Decision
Problem P

Decision
Problem Q

Quasi -Karp Equivalence

Inspired by Karp Reductions we introduce a formal criterion to check whether two
MILP formulations are equivalent:

Optimization
Problem alpha’

Optimal for
Problem alpha?

Optimal
Solution

Mapped Optimal
Solution

Quasi -Karp Equivalence

Model 1
Total
Land

Model 2
Fraction of

Land

Mapping
from 2 to 1

Consider a simple example where f is a linear function:

Example:

Quasi -Karp Equivalence

Model 1
Total
Land

Model 2
Fraction of

Land

Mapping
from 2 to 1

Consider a simple example where f is a linear function:

Example:

Feasible: Yes
Optimality Gap: 0

EquivaMap

Key Idea: Use a LLM to generate the mapping function

Reference Problem

Generated Problem

LLM

Solver

Mapper

Gen. Solution

Mapped Sol.

Why is this reasonable?

Huh? We’re using a LLM to check if an LLM can formulate an optimization problem?

Verifiable
If we find a mapping, and the

mapped solution is optimal and
feasible we have verification! We
don’t need to depend on the LLM

being correct every time.

Flexible Output Format
While ideally we would want

some closed form mapping, for
mapping an optimal solution we
can also generate this mapping

in a ‘code’ space

Simpler Problem
Mapping between variables is

much easier than checking
equivalence! Rich natural

language information available
to help.

Evaluation

We introduce a new
dataset with a set of
predefined
equivalent and
nonequivalent
formulations.

EquivaMap Results

Takeaway: EquivaMap correctly verifies formulation equivalence across settings
where existing heuristics break down

Open Questions

EquivaMap works great for simple transformations, but there’s a ton more work to do!

Constraint Verification
Some constraints aren’t tight at
optimality? How can we verify

they’re still implemented correctly?

Automated Complexity Proofs
Can we push the same

algorithmic ideas to help do
automated proofs?

Verification without Labels
What if we don’t have a

ground-truth ‘correct’ formulation?
Can we reliably verify models

based on NL?

Takeaways

Modeling is a barrier to access optimization tools!
Domain experts often do not have expertise to model problems.

LLMs (with the right framework) can model optimization problems!
LLMs can bridge expertise gaps in modeling CP and MILP problems.

More work to do!
LLMs still struggle to model complex problems and can be difficult to trust…

open-source tools like OptiMUS and ORLM can promote future research!

Thanks! Questions?

