Model solving

Ellen Vitercik

ML to speed up MILP solvers

CPX_PARAM_NODEFILEIND 100
CPX_PARAM_NODELIM 101
CPX_PAR ANALA NTAAIOTOTIT 1NN

CPX_PARAM_TRELIM 160
CPX_PARAM_TUNINGDETTILIM 160

AV D ADANAL TTTANTINTAIOYTICDT AV 1N

CPX_PARAM_RANDOMSEED 130
CPX_PARAM_REDUCE 131

DV DAD AN DLOTNTV 121

CPXPARAM_MIP_Pool_RelGap 148
CPXPARAM_MIP_Pool_Replace 151

CMDVDAD AN NMID Ctuntancsr Ruasnala 20

CPX_PARAM_FLOWCOVERS 70
CPX_PARAM_FLOWPATHS 71
"DV DADAN FPHEUR 72

CPX_PAFL FRACCAND 73
e @ Modern MILP solvers expose hundreds of parameters FRACCUTS 73
CPX_PAFL GUBCOVERS 75
CPX_PAFL HEURFREQ 76
CPX_PAFL IMPLBD 76

CPX_PAFL INTSOLFILEPREFIX 78
CPX_PAFL INTSOLLIM 79

CPX PAF ITLIM 80

CPX_PAFL L ANDPCUTS 82
CPX_PAFL | BHEUR 81

CPX_PAFL I PMETHOD 136
CPX_PAFL MCFECUTS 82
CPX_PAFL MEMORYEMPHASIS 8-
CPX_PAFL MIPCBREDLP &4
(deprec MIPDISPLAY 85
CPX_PAFL MIPEMPHASIS 87
CPX_PAFL MIPINTERVAL 88
CPX_PAFL MIPKAPPASTATS 89
CPX_PAFL MIPORDIND 90
CPX_PAR JMIPORDTYPE 91

CPX_PARAM_PREPASS 121
CPX_PARAM_PRESLVND 122
CPX_PARAM_PRICELIM 123
CPX_PARAM_PROBE 123
CPX_PARAM_PROBEDETTIME 124
CPX_PARAM_PROBETIME 124
CPX_PARAM_QPMAKEPSDIND 125
CPX_PARAM_QPMETHOD 138
CPX_PARAM_QPNZREADLIM 126

CPXPARAM_MIP_Limits_RampupTimeLimit 128
CPXPARAM_ MIP Limits Solutions 79
CPXPARAM_MIP_Limits_StrongCand 154
CPXPARAM_MIP_Limits_Stronglt 154
CPXPARAM_MIP_Limits_TreeMemory 160
CPXPARAM_MIP_OrderType 91
CPXPARAM_MIP_Pool_AbsGap 146
CPXPARAM_MIP_Pool_Capacity 147
CPXPARAM_MIP_Pool_Intensity 149

CPXPARAM_OptimalityTarget 106
CPX_PARAM_SOLUTIONTYPE 152
CPX_PARAM_STARTALG 139
CPX_PARAM_STRONGCANDLIM 154
CPX_PARAM_STRONGITLIM 154
CPX_PARAM_SUBALG 99
CPX_PARAM_SUBMIPNODELIMIT 155
CPX_PARAM_SYMMETRY 156
CPX_PARAM_THREADS 157
CPX_PARAM_TILIM 159

CPXPARAM_TimeLimit 159
CPXPARAM_Tune DetTimeLimit 160
CPXPARAM_Tune_Display 162
CPXPARAM Tune Measure 163
CPXPARAM_Tune_Repeat 164
CPXPARAM_ Tune TimeLimit 165
CPXPARAM_ WorkDir 167
CPXPARAM_WorkMem 168

Cralnd 50

CPX_PARAM_MIPSEARCH 92
CPX_PARAM_MIQCPSTRAT 93
CPX_PARAM_MIRCUTS 9%
CPX_PARAM_MPSLONGNUM 9%
CPX_PARAM_NETDISPLAY 95
CPX_PARAM_NETEPOPT 96
CPX_PARAM_NETEPRHS 96
CPX_PARAM_NETFIND 97
CPX_PARAM_NETITLIM 98
CPX_PARAM_NETPPRIIND 98

ML to speed up MILP solvers

CPX_PARAM_NODEFILEIND 100
CPX_PARAM_NODELIM 101
CPX_PAR ANLS ATANMTIOTT 1Nnn
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
(deprec
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAK

CPX_PARAM_TRELIM 160
CPX_PARAM_TUNINGDETTILIM 160

AV D ADANALA TTTINTINTATOATICDT AV 1N

CPX_PARAM_RANDOMSEED 130
CPX_PARAM_REDUCE 131

DY DAD AN DLOTNTV 121

CPXPARAM_MIP_Pool_RelGap 148
CPXPARAM_MIP_Pool_Replace 151

CDVDAD AN NMTD Ctuntancsr Ruanal 20

® Modern MILP solvers expose hundreds of parameters

® Defaults are rarely optimal: instance families vary widely in structure

CPX_PARAM_FLOWCOVERS 70
CPX_PARAM_FLOWPATHS 71
"DV DADAN FPHEUR 72
FRACCAND 73
FRACCUTS 73
FRACPASS 74
GUBCOVERS 75
HEURFREQ 76
IMPLBD 76
INTSOLFILEPREFIX 78
INTSOLLIM 79
ITLIM 80

I ANDPCUTS 82

| BHEUR 81

I PMETHOD 136
MCFCUTS 82
MEMORYEMPHASIS 8-
MIPCBREDLP 84
MIPDISPLAY 85
MIPEMPHASIS 87
MIPINTERVAL 88
MIPKAPPASTATS 89
MIPORDIND 90

- MIPORDTYPE 91

CPX_PARAM_PREPASS 121
CPX_PARAM_PRESLVND 122
CPX_PARAM_PRICELIM 123
CPX_PARAM_PROBE 123
CPX_PARAM_PROBEDETTIME 124
CPX_PARAM_PROBETIME 124
CPX_PARAM_QPMAKEPSDIND 125
CPX_PARAM_QPMETHOD 138
CPX_PARAM_QPNZREADLIM 126

CPXPARAM_MIP_Limits_RampupTimeLimit 128
CPXPARAM_MIP_ Limits Solutions 79
CPXPARAM_MIP_Limits_StrongCand 154
CPXPARAM_MIP_Limits_Stronglt 154
CPXPARAM_MIP_Limits_TreeMemory 160
CPXPARAM_MIP_OrderType 91
CPXPARAM_MIP_Pool_AbsGap 146
CPXPARAM_MIP_Pool_Capacity 147
CPXPARAM_MIP_Pool_Intensity 149

CPXPARAM_OptimalityTarget 106
CPX_PARAM_SOLUTIONTYPE 152
CPX_PARAM_STARTALG 139
CPX_PARAM_STRONGCANDLIM 154
CPX_PARAM_STRONGITLIM 154
CPX_PARAM_SUBALG 99
CPX_PARAM_SUBMIPNODELIMIT 155
CPX_PARAM_SYMMETRY 156
CPX_PARAM_THREADS 157
CPX_PARAM_TILIM 159

CPXPARAM_TimeLimit 159
CPXPARAM_Tune_DetTimeLimit 160
CPXPARAM_Tune_Display 162
CPXPARAM_Tune_Measure 163
CPXPARAM_Tune_Repeat 164
CPXPARAM_Tune_TimeLimit 165
CPXPARAM_WorkDir 167
CPXPARAM_WorkMem 168

Cralnd 50

CPX_PARAM_MIPSEARCH 92
CPX_PARAM_MIQCPSTRAT 93
CPX_PARAM_MIRCUTS 9%
CPX_PARAM_MPSLONGNUM 9%
CPX_PARAM_NETDISPLAY 95
CPX_PARAM_NETEPOPT 96
CPX_PARAM_NETEPRHS 96
CPX_PARAM_NETFIND 97
CPX_PARAM_NETITLIM 98
CPX_PARAM_NETPPRIIND 98

ML to speed up MILP solvers

CPX_PARAM_NODEFILEIND 100
CPX_PARAM_NODELIM 101
CPX_PAR ANA ANTANMTOTT 1Nnn
CPX_PAFE
CPX_PAF
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
(deprec
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAK

CPX_PARAM_TRELIM 160
CPX_PARAM_TUNINGDETTILIM 160

AV DADANALA TTTINTINTATOATICDT AV 1N

CPX_PARAM_RANDOMSEED 130
CPX_PARAM_REDUCE 131

DY DAD AN DLOTNTV 121

CPXPARAM_MIP_Pool_RelGap 148
CPXPARAM_MIP_Pool_Replace 151

CDVDAD AN NMTD Ctuntancsr Ruanal 20

® Modern MILP solvers expose hundreds of parameters
® Defaults are rarely optimal: instance families vary widely in structure

® Small changes can yield large runtime differences

CPX_PARAM_FLOWCOVERS 70
CPX_PARAM_FLOWPATHS 71
"DV DADAN FPHEUR 72
FRACCAND 73
FRACCUTS 73
FRACPASS 74
GUBCOVERS 75
HEURFREQ 76
IMPLBD 76
INTSOLFILEPREFIX 78
INTSOLLIM 79
ITLIM 80

[ANDPCUTS 82

[BHEUR 81

| PMETHOD 136
MCFCUTS 82
MEMORYEMPHASIS 8-
MIPCBREDLP 84
MIPDISPLAY 85
MIPEMPHASIS 87
MIPINTERVAL 88
MIPKAPPASTATS 89
MIPORDIND 90

- MIPORDTYPE 91

CPX_PARAM_PREPASS 121
CPX_PARAM_PRESLVND 122
CPX_PARAM_PRICELIM 123
CPX_PARAM_PROBE 123
CPX_PARAM_PROBEDETTIME 124
CPX_PARAM_PROBETIME 124
CPX_PARAM_QPMAKEPSDIND 125
CPX_PARAM_QPMETHOD 138
CPX_PARAM_QPNZREADLIM 126

CPXPARAM_MIP_Limits_RampupTimeLimit 128
CPXPARAM_ MIP_ Limits Solutions 79
CPXPARAM_MIP_Limits_StrongCand 154
CPXPARAM_MIP_Limits_Stronglt 154
CPXPARAM_MIP_Limits_TreeMemory 160
CPXPARAM_MIP_OrderType 91
CPXPARAM_MIP_Pool_AbsGap 146
CPXPARAM_MIP_Pool_Capacity 147
CPXPARAM_MIP_Pool_Intensity 149

CPXPARAM_OptimalityTarget 106
CPX_PARAM_SOLUTIONTYPE 152
CPX_PARAM_STARTALG 139
CPX_PARAM_STRONGCANDLIM 154
CPX_PARAM_STRONGITLIM 154
CPX_PARAM_SUBALG 99
CPX_PARAM_SUBMIPNODELIMIT 155
CPX_PARAM_SYMMETRY 156
CPX_PARAM_THREADS 157
CPX_PARAM_TILIM 159

CPXPARAM_TimeLimit 159
CPXPARAM_Tune_DetTimeLimit 160
CPXPARAM_Tune_Display 162
CPXPARAM_Tune_Measure 163
CPXPARAM_Tune_Repeat 164
CPXPARAM_Tune_TimeLimit 165
CPXPARAM_WorkDir 167
CPXPARAM_WorkMem 168

Cralnd 50

CPX_PARAM_MIPSEARCH 92
CPX_PARAM_MIQCPSTRAT 93
CPX_PARAM_MIRCUTS 9%
CPX_PARAM_MPSLONGNUM 9%
CPX_PARAM_NETDISPLAY 95
CPX_PARAM_NETEPOPT 96
CPX_PARAM_NETEPRHS 96
CPX_PARAM_NETFIND 97
CPX_PARAM_NETITLIM 98
CPX_PARAM_NETPPRIIND 98

ML to speed up MILP solvers

CPX_PARAM_NODEFILEIND 100
CPX_PARAM_NODELIM 101
CPX_PAR ANLS ATANMTIOTT 1Nnn
CPX_PAFE
CPX_PAFL
CPX_PAF
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
(deprec
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAK

CPX_PARAM_TRELIM 160
CPX_PARAM_TUNINGDETTILIM 160

AV DADANALA TTTINTINTATOATICDT AV 1N

CPX_PARAM_RANDOMSEED 130
CPX_PARAM_REDUCE 131

DY DAD AN DLOTNTV 121

® Many ways to integrate ML into solvers

CPXPARAM_MIP_Pool_RelGap 148
CPXPARAM_MIP_Pool_Replace 151

CDVDAD AN NMTD Ctuntancsr Ruanal 20

® Modern MILP solvers expose hundreds of parameters
® Defaults are rarely optimal: instance families vary widely in structure

® Small changes can yield large runtime differences

CPX_PARAM_FLOWCOVERS 70
CPX_PARAM_FLOWPATHS 71
"DV DADAN FPHEUR 72
FRACCAND 73
FRACCUTS 73
FRACPASS 74
GUBCOVERS 75
HEURFREQ 76
IMPLBD 76
INTSOLFILEPREFIX 78
INTSOLLIM 79
ITLIM 80

[ANDPCUTS 82

[BHEUR 81

| PMETHOD 136
MCFCUTS 82
MEMORYEMPHASIS &
MIPCBREDLP 84
MIPDISPLAY 85
MIPEMPHASIS 87
MIPINTERVAL 88
MIPKAPPASTATS 89
MIPORDIND 90

- MIPORDTYPE 91

CPX_PARAM_PREPASS 121
CPX_PARAM_PRESLVND 122
CPX_PARAM_PRICELIM 123
CPX_PARAM_PROBE 123
CPX_PARAM_PROBEDETTIME 124
CPX_PARAM_PROBETIME 124
CPX_PARAM_QPMAKEPSDIND 125
CPX_PARAM_QPMETHOD 138
CPX_PARAM_QPNZREADLIM 126

CPXPARAM_MIP_Limits_RampupTimeLimit 128
CPXPARAM_MIP_Limits_Solutions 79
CPXPARAM_MIP_Limits_StrongCand 154
CPXPARAM_MIP_Limits_Stronglt 154
CPXPARAM_MIP_Limits_TreeMemory 160
CPXPARAM_MIP_OrderType 91
CPXPARAM_MIP_Pool_AbsGap 146
CPXPARAM_MIP_Pool_Capacity 147
CPXPARAM_MIP_Pool_Intensity 149

CPXPARAM_OptimalityTarget 106
CPX_PARAM_SOLUTIONTYPE 152
CPX_PARAM_STARTALG 139
CPX_PARAM_STRONGCANDLIM 154
CPX_PARAM_STRONGITLIM 154
CPX_PARAM_SUBALG 99
CPX_PARAM_SUBMIPNODELIMIT 155
CPX_PARAM_SYMMETRY 156
CPX_PARAM_THREADS 157
CPX_PARAM_TILIM 159

CPXPARAM_TimeLimit 159
CPXPARAM Tune DetTimeLimit 160
CPXPARAM_Tune_Display 162
CPXPARAM_Tune_Measure 163
CPXPARAM_Tune_Repeat 164
CPXPARAM_Tune_TimeLimit 165
CPXPARAM_WorkDir 167
CPXPARAM_WorkMem 168

Cralnd 50

CPX_PARAM_MIPSEARCH 92
CPX_PARAM_MIQCPSTRAT 93
CPX_PARAM_MIRCUTS 9%
CPX_PARAM_MPSLONGNUM 9%
CPX_PARAM_NETDISPLAY 95
CPX_PARAM_NETEPOPT 96
CPX_PARAM_NETEPRHS 96
CPX_PARAM_NETFIND 97
CPX_PARAM_NETITLIM 98
CPX_PARAM_NETPPRIIND 98

CPX_PARAM_NODEFILEIND 100
CPX_PARAM_NODELIM 101
CPX_PAR AANALA NTANITOTIOTITY 1NN

CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAE
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL

(deprec
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAFL
CPX_PAK

CPX_PARAM_PREPASS 121
CPX_PARAM_PRESLVND 122
CPX_PARAM_PRICELIM 123
CPX_PARAM_PROBE 123
CPX_PARAM_PROBEDETTIME 124
CPX_PARAM_PROBETIME 124
CPX_PARAM_QPMAKEPSDIND 125
CPX_PARAM_QPMETHOD 138
CPX_PARAM_QPNZREADLIM 126

ML to speed up MILP solvers

CPX_PARAM_RANDOMSEED 130
CPX_PARAM_REDUCE 131

DY DAD AN DLOTNTV 121

CPX_PARAM_TRELIM 160
CPX_PARAM_TUNINGDETTILIM 160

AV DADANALA TTTINTINTATOATICDT AV 1N

CPXPARAM_MIP_Pool_RelGap 148
CPXPARAM_MIP_Pool_Replace 151

CDVDAD AN NMTD Ctuntancsr Ruanal 20

® Modern MILP solvers expose hundreds of parameters
® Defaults are rarely optimal: instance families vary widely in structure
® Small changes can yield large runtime differences

® Many ways to integrate ML into solvers
® Potential for ML to provide significant speedups over defaults

CPX_PARAM_FLOWCOVERS 70
CPX_PARAM_FLOWPATHS 71
"DV DADAN FPHEUR 72

FRACCAND 73
FRACCUTS 73
FRACPASS 74
GUBCOVERS 75
HEURFREQ 76
IMPLBD 76
INTSOLFILEPREFIX 78
INTSOLLIM 79
ITLIM 80

[ANDPCUTS 82

| BHEUR 81

I PMETHOD 136
MCFCUTS 82
MEMORYEMPHASIS &
MIPCBREDLP 84
MIPDISPLAY 85
MIPEMPHASIS 87
MIPINTERVAL 88
MIPKAPPASTATS 89
MIPORDIND 90

CPXPARAM_TimeLimit 159
CPXPARAM Tune DetTimeLimit 160
CPXPARAM_Tune_Display 162
CPXPARAM_Tune_Measure 163
CPXPARAM_Tune_Repeat 164
CPXPARAM_Tune_TimeLimit 165
CPXPARAM_WorkDir 167
CPXPARAM_WorkMem 168

Cralnd 50

CPXPARAM_MIP_Limits_RampupTimeLimit 128
CPXPARAM_MIP_Limits_Solutions 79
CPXPARAM_MIP_Limits_StrongCand 154
CPXPARAM_MIP_Limits_Stronglt 154
CPXPARAM_MIP_Limits_TreeMemory 160
CPXPARAM_MIP_OrderType 91
CPXPARAM_MIP_Pool_AbsGap 146
CPXPARAM_MIP_Pool_Capacity 147
CPXPARAM_MIP_Pool_Intensity 149

CPXPARAM_OptimalityTarget 106
CPX_PARAM_SOLUTIONTYPE 152
CPX_PARAM_STARTALG 139
CPX_PARAM_STRONGCANDLIM 154
CPX_PARAM_STRONGITLIM 154
CPX_PARAM_SUBALG 99
CPX_PARAM_SUBMIPNODELIMIT 155
CPX_PARAM_SYMMETRY 156
CPX_PARAM_THREADS 157
CPX_PARAM_TILIM 159

- MIPORDTYPE 91
CPX_PARAM_MIPSEARCH 92
CPX_PARAM_MIQCPSTRAT 93
CPX_PARAM_MIRCUTS 9%
CPX_PARAM_MPSLONGNUM 9%
CPX_PARAM_NETDISPLAY 95
CPX_PARAM_NETEPOPT 96
CPX_PARAM_NETEPRHS 96
CPX_PARAM_NETFIND 97
CPX_PARAM_NETITLIM 98
CPX_PARAM_NETPPRIIND 98

Outline

1. Background
i. Branch-and-cut (B&C) algorithm
ii. Brief overview of ML for B&C: non-GenAl

2. LLMs for speeding up solvers
3. Takeaways

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

® Explore search tree of restricted MILP subproblems

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

® Explore search tree of restricted MILP subproblems
® Fach node adds bounds on integer variables

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

® Explore search tree of restricted MILP subproblems
® Fach node adds bounds on integer variables

® Solve LP relaxation to upper bound subproblem’s integer-tfeasible solution

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

® Explore search tree of restricted MILP subproblems
® Fach node adds bounds on integer variables

® Solve LP relaxation to upper bound subproblem’s integer-tfeasible solution
® |f integer-feasible: incumbent solution

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

® Explore search tree of restricted MILP subproblems
® Fach node adds bounds on integer variables

® Solve LP relaxation to upper bound subproblem’s integer-tfeasible solution
® |f integer-feasible: incumbent solution

® Branch by choosing a variable and splitting its domain

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

® Explore search tree of restricted MILP subproblems
® Fach node adds bounds on integer variables

® Solve LP relaxation to upper bound subproblem’s integer-tfeasible solution
® |f integer-feasible: incumbent solution

()

Variable

® Branch by choosing a variable and splitting its domain «— . .
selection pollcy)

_

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

® Explore search tree of restricted MILP subproblems
® Fach node adds bounds on integer variables

® Solve LP relaxation to upper bound subproblem’s integer-tfeasible solution
® |f integer-feasible: incumbent solution

()

Variable

® Branch by choosing a variable and splitting its domain «— . .
selection pollcy)

_

® Prune nodes whose bound can’t beat incumbent

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

® Explore search tree of restricted MILP subproblems
® Fach node adds bounds on integer variables

® Solve LP relaxation to upper bound subproblem’s integer-tfeasible solution
® |f integer-feasible: incumbent solution

()

Variable

® Branch by choosing a variable and splitting its domain «— . .
selection pollcy)

_

® Prune nodes whose bound can’t beat incumbent

® Terminate when all nodes pruned or proven optimal

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

" MILP h

maximize c¢lx

subjectto Ax < b
9 xiEZforaHzelJ

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

" MILP a
maximize c¢lx
subjectto Ax < b

9 xiEZforaHzelJ

maximize c¢lx

subjectto Ax < b

l

- ol

/Linear programming (LP) relaxation A

/

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

" MILP a
maximize c¢lx
subjectto Ax < b

9 xiEZforaHzelJ

/Linear programming (LP) relaxation A

maximize c¢lx

subjectto Ax < b

g V& Ltoratiet Y,

l

[LP optimal solution]

v

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

KMILP B KLinear programming (LP) relaxation A
maximize c¢'x maximize c¢'x
subjectto Ax < b subjectto Ax < b

K XZEZfOraHZED \ *E—L'Fe-ﬁa-l-l-t—&kl j

Cutting planes (CPs) are additional constraints that: [LP optimal SOMOH]

v

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

KMILP B KLinear programming (LP) relaxation A
maximize c¢'x maximize c¢'x
subjectto Ax < b subjectto Ax < b

K XZEZfOraHZED \ *E—L'Fe-ﬁa-l-l-t—&kl j

Cutting planes (CPs) are additional constraints that: [LP optima solution]
® Separate LP optimal solution |

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

KMILP B KLinear programming (LP) relaxation A
maximize c¢'x maximize c¢'x
subjectto Ax < b subjectto Ax < b

K XZEZfOraHZEU K #E%Fe-ﬁa-l-l-t—&kl j

Cutting planes (CPs) are additional constraints that: [LP optima solution]
® Separate LP optimal solution |

® Don't separate any integer point II

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

KMILP B KLinear programming (LP) relaxation A
maximize c¢'x maximize c¢'x
subjectto Ax < b subjectto Ax < b

K XZEZfOraHZEU K #E%Fe-ﬁa-l-l-t—&kl j

Cutting planes (CPs) are additional constraints that: [LP optima solution]
® Separate LP optimal solution |

® Don't separate any integer point

Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

KMILP B KLinear programming (LP) relaxation A
maximize c¢'x maximize c¢'x
subjectto Ax < b subjectto Ax < b

K XZEZfOraHZEU K #E%Fe-ﬁa-l-l-t—&kl j

Cutting planes (CPs) are additional constraints that: [LP optima solution]
® Separate LP optimal solution |

® Don't separate any integer point
Many different families ot CPs; which to use when? LNy

Outline

1. Background
i. Branch-and-cut (B&C) algorithm
ii. Brief overview of ML for B&C: non-GenAl

2. LLMs for speeding up solvers
3. Takeaways

General setup
ML for MILP solvers

® Define a parameterized solver A(0). E.qg.:

General setup
ML for MILP solvers

® Define a parameterized solver A(0). E.qg.:

® () are parameters exposed by Gurobi

General setup
ML for MILP solvers

® Define a parameterized solver A(0). E.qg.:

® () are parameters exposed by Gurobi

® () are parameters of a neural network embedded in solver

General setup
ML for MILP solvers

® Define a parameterized solver A(0). E.qg.:
® () are parameters exposed by Gurobi

® () are parameters of a neural network embedded in solver

® Specity distribution D over MILPs z (models application domain)

General setup
ML for MILP solvers

® Define a parameterized solver A(0). E.qg.:

® () are parameters exposed by Gurobi

® () are parameters of a neural network embedded in solver
® Specity distribution D over MILPs z (models application domain)

® Choose a performance metric c(z, 0); e.g., runtime

General setup
ML for MILP solvers

® Define a parameterized solver A(0). E.qg.:
® () are parameters exposed by Gurobi

® () are parameters of a neural network embedded in solver
® Specity distribution D over MILPs z (models application domain)

® Choose a performance metric c(z, 0); e.g., runtime

e Ultimate goal: minimize E, [C(Z, «9)] (proxy of future cost on unseen MILPs)

General setup
ML for MILP solvers

® Define a parameterized solver A(0). E.qg.:

® () are parameters exposed by Gurobi

® () are parameters of a neural network embedded in solver

® Specity distribution D over MILPs z (models application domain)

® Choose a performance metric c(z, 0); e.g., runtime

e Ultimate goal: minimize E, [C(Z, «9)] (proxy of future cost on unseen MILPs)

® Can learn offline 8 or instance-aware 6(z) configuration

Blackbox algorithm configuration <>

L

® Early work: treat solver (largely) as a black-box; learn from evaluations

Blackbox algorithm configuration \g

!

® Early work: treat solver (largely) as a black-box; learn from evaluations

® Small subset of examples:

® ParamlLS: iterated local search over parameter settings

Blackbox algorithm configuration \g

!

® Early work: treat solver (largely) as a black-box; learn from evaluations

® Small subset of examples:

® ParamlLS: iterated local search over parameter settings

® SMAC: model-based search with surrogate predictions

Blackbox algorithm configuration \g

~

® Early work: treat solver (largely) as a black-box; learn from evaluations

® Small subset of examples:

® ParamlLS: iterated local search over parameter settings
® SMAC: model-based search with surrogate predictions

e Portfolio-based algorithm selection

Blackbox algorithm configuration

Example: Portfolio-based algorithm configuration

Xu, Hoos, Leyton-Brown, AAAI'10

Blackbox algorithm configuration

Example: Portfolio-based algorithm configuration

® One configuration rarely dominates across diverse MILP instances

Xu, Hoos, Leyton-Brown, AAAI'10

Blackbox algorithm configuration

Example: Portfolio-based algorithm configuration

® One configuration rarely dominates across diverse MILP instances

® Portfolios combine multiple strong configurations

Xu, Hoos, Leyton-Brown, AAAI'10

Blackbox algorithm configuration

Example: Portfolio-based algorithm configuration

® One configuration rarely dominates across diverse MILP instances
® Portfolios combine multiple strong configurations

® Hydra iteratively grows portfolio via targeted reconfiguration

Xu, Hoos, Leyton-Brown, AAAI'10

Blackbox algorithm configuration

Example: Portfolio-based algorithm configuration

® One configuration rarely dominates across diverse MILP instances
® Portfolios combine multiple strong configurations

® Hydra iteratively grows portfolio via targeted reconfiguration

® Tune new member against instances current portfolio solves poorly

Xu, Hoos, Leyton-Brown, AAAI'10

Blackbox algorithm configuration

Example: Portfolio-based algorithm configuration

® One configuration rarely dominates across diverse MILP instances
® Portfolios combine multiple strong configurations

® Hydra iteratively grows portfolio via targeted reconfiguration

® Tune new member against instances current portfolio solves poorly

® |nstance features enable per-instance selection (static & quick probing runs)

Xu, Hoos, Leyton-Brown, AAAI'10

Blackbox algorithm configuration

Example: Portfolio-based algorithm configuration

® One configuration rarely dominates across diverse MILP instances
® Portfolios combine multiple strong configurations

® Hydra iteratively grows portfolio via targeted reconfiguration

® Tune new member against instances current portfolio solves poorly

® |nstance features enable per-instance selection (static & quick probing runs)

® Choose configuration before solving each instance

Xu, Hoos, Leyton-Brown, AAAI'10

Configuration of solver components

Next gen: don't treat solver as blackbox; adapt to solver components. E.g.:

Cut selection

Variable selection

Node selection

Tang et al., ICML'20

Balcan et al., Neurl

Balcan et al., Neurl
Paulus et al., ICM

PS'21
PS'22

|22

Wang et al., ICLR'23
Li et al., NeurlPS'23
Deza, Khalil, IJCAI'23
Ling et al., AAAI'24
Cheng, Basu, NeurlPS'24
Cheng et al., NeurlPS'24

Khalil et al., AAAI'16
Alvarez et al., INFORMS JoC'17
Balcan et al., ICML'18
Gasse et al., NeurlPS'19
Gupta et al., NeurlPS'20
Zarpellon et al., AAAI'21
Scavuzzo et al., NeurlPS'22

He et al., NeurlPS'14
Labassi et al., NeurlPS'22
Zhang et al., ICLR'25

Configuration of solver components

Next gen: don't treat solver as blackbox; adapt to solver components. E.g.:

Cut selection

Variable selection

Node selection

Tang et al., ICML'20

Balcan et al., Neurl

Balcan et al., Neurl
Paulus et al., ICM

PS'21
PS'22

|22

Wang et al., ICLR'23
Li et al., NeurlPS'23
Deza, Khalil, IJCAI'23
Ling et al., AAAI'24
Cheng, Basu, NeurlPS'24
Cheng et al., NeurlPS'24

Khalil et al., AAAI'16
Alvarez et al., INFORMS JoC'17
Balcan et al., ICML'18
Gasse et al., NeurlPS’'19
Gupta et al., NeurlPS'20
Zarpellon et al., AAAI'21
Scavuzzo et al., NeurlPS'22

He et al., NeurlPS'14
Labassi et al., NeurlPS'22
Zhang et al., ICLR'25

Graph neural networks for variable selection

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurlPS'19

Graph neural networks for variable selection

e Key idea: encode B&B state as variable-constraint bipartite graph

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurlPS'19

Graph neural networks for variable selection

e Key idea: encode B&B state as variable-constraint bipartite graph
® Use bipartite graph neural network as a variable selection policy

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurlPS'19

Graph neural networks for variable selection

e Key idea: encode B&B state as variable-constraint bipartite graph
® Use bipartite graph neural network as a variable selection policy

® Training: behavioral cloning of strong branching (expensive gold standard)

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurlPS'19

Graph neural networks for variable selection

e Key idea: encode B&B state as variable-constraint bipartite graph
® Use bipartite graph neural network as a variable selection policy

® Training: behavioral cloning of strong branching (expensive gold standard)

® |ntegrated in SCIP; four NP-hard benchmarks

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurlPS'19

Graph neural networks for variable selection

e Key idea: encode B&B state as variable-constraint bipartite graph
® Use bipartite graph neural network as a variable selection policy

® Training: behavioral cloning of strong branching (expensive gold standard)
® |ntegrated in SCIP; four NP-hard benchmarks

® Results:
® Best imitation accuracy among ML baselines

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurlPS'19

Graph neural networks for variable selection

e Key idea: encode B&B state as variable-constraint bipartite graph
® Use bipartite graph neural network as a variable selection policy

® Training: behavioral cloning of strong branching (expensive gold standard)

® |ntegrated in SCIP; four NP-hard benchmarks

® Results:
® Best imitation accuracy among ML baselines
® Generally taster than SCIP detault; good size generalization

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurlPS'19

Benchmarks

Benchmarks

e MIPLIB 2017: widely used “real-world” MILP benchmark library

Benchmarks

e MIPLIB 2017: widely used “real-world” MILP benchmark library

® Benchmark set: 240 instances, solvable, numerically stable

Benchmarks

e MIPLIB 2017: widely used “real-world” MILP benchmark library

® Benchmark set: 240 instances, solvable, numerically stable

® Collection set: 1065 diverse instances, less filterec

Benchmarks

e MIPLIB 2017: widely used “real-world” MILP benchmark library

® Benchmark set: 240 instances, solvable, numerically stable

® Collection set: 1065 diverse instances, less filterec

® Distributional MIPLIB: library of MILP distributions

® More than 35 distributions across 13 domains

Benchmarks

e MIPLIB 2017: widely used “real-world” MILP benchmark library

® Benchmark set: 240 instances, solvable, numerically stable

® Collection set: 1065 diverse instances, less filterec

® Distributional MIPLIB: library of MILP distributions

® More than 35 distributions across 13 domains
® |ncludes synthetic and real-world domains, multiple hardness levels

Benchmarks

e MIPLIB 2017: widely used “real-world” MILP benchmark library

® Benchmark set: 240 instances, solvable, numerically stable

® Collection set: 1065 diverse instances, less filterec

® Distributional MIPLIB: library of MILP distributions [Huang et al., arXiv'24]

® More than 35 distributions across 13 domains
® |ncludes synthetic and real-world domains, multiple hardness levels

® MILP-Evolve [Li et al. ICLR'25]

Benchmarks

e MIPLIB 2017: widely used “real-world” MILP benchmark library

® Benchmark set: 240 instances, solvable, numerically stable

® Collection set: 1065 diverse instances, less filterec

® Distributional MIPLIB: library of MILP distributions

® More than 35 distributions across 13 domains
® |ncludes synthetic and real-world domains, multiple hardness levels

® MILP-Evolve

® "Evolving” pipeline for generating new MILP tamilies

Benchmarks

e MIPLIB 2017: widely used “real-world” MILP benchmark library

® Benchmark set: 240 instances, solvable, numerically stable

® Collection set: 1065 diverse instances, less filterec

® Distributional MIPLIB: library of MILP distributions

® More than 35 distributions across 13 domains
® |ncludes synthetic and real-world domains, multiple hardness levels

® MILP-Evolve

® "Evolving” pipeline for generating new MILP tamilies

® Designed to be highly diverse to mimic real-world optimization scenarios

Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search tor MILP heuristics

3. Takeaways

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Key challenge

Conventional data-driven approaches require a lot of compute

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Key challenge

Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Key challenge

Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Key challenge

Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs
2. Find configuration(s) with good average runtime over training set
3. Hope for a good runtime from the same application (or distribution)

Key challenge: Evaluating one configuration’s average runtime

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Key challenge

Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs
2. Find configuration(s) with good average runtime over training set
3. Hope for a good runtime from the same application (or distribution)

Key challenge: Evaluating one configuration’s average runtime
requires solving every MILP in the training set using that configuration

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Key challenge

Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs
2. Find configuration(s) with good average runtime over training set
3. Hope for a good runtime from the same application (or distribution)

Key challenge: Evaluating one configuration’s average runtime
requires solving every MILP in the training set using that configuration

Key question: Can we generate problem-specitic cutting plane configurations

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Key challenge

Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs
2. Find configuration(s) with good average runtime over training set
3. Hope for a good runtime from the same application (or distribution)

Key challenge: Evaluating one configuration’s average runtime
requires solving every MILP in the training set using that configuration

Key question: Can we generate problem-specitic cutting plane configurations
with little to no historical data and compute?

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Our contributions

® First LLM-based framework to configure MILP solvers

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Our contributions

® First LLM-based framework to configure MILP solvers

® Consistent improvement over solver default (SCIP and Gurobi)

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Our contributions

® First LLM-based framework to configure MILP solvers

® Consistent improvement over solver default (SCIP and Gurobi)

® Pareto-optimal compared to baseline methods

SCIP
LLM(5)@® Search(500)
50 o
40
Avg improvement 30 ® Our method
o .
over SCIP (%) 20 LiMee) ® Baselines
0 Seagh(S)
Pruning

0 o

0 2 4 6 8 0 12

log(# MILP solves)

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Our contributions

® First LLM-based framework to configure MILP solvers

® Consistent improvement over solver default (SCIP and Gurobi)

® Pareto-optimal compared to baseline methods

Avg improvement

over SCIP (%)

[J
SCIP Gurobi
LLM®)@® Search(500) 6 Search(500) @
50 o
LLg/I(S)
40 4
LLM(0)
, ®
30 Avg improvement ,
- 10 Pruning
ver ropl
20 EEM®) over Gurobi (%) P
®
Search(5) 0
10 [)
Pruning Search(5)
0 o o
0 2 4 6 8 10 12 0 2 4 6 8 10 12

log(# MILP solves) log(# MILP solves)

Lawless, Li, Wikum, Udell, V, CPAIOR'25

® Our method

® Baselines

Why LLMs

® || Ms are powerful, but they cant do everything

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Why LLMs

® || Ms are powertul, but they can't do everything

® They are good at information retrieval

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Why LLMs

® || Ms are powerful, but they can’t do everything
® They are good at information retrieval

® There's a rich literature on cutting planes

Go g|€ Scholar cutting planes B

Articles About 2,470,000 results (0.10 sec)

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Challenges to using LLMs

® | | M output can be highly unstable

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Challenges to using LLMs

® | | M output can be highly unstable

® Cutting plane separators are solver-specific

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Challenges to using LLMs

® | | M output can be highly unstable

® Cutting plane separators are solver-specific

® Details of solver separators are not always available

> CoverCuts

Cover cut generation

e Type: int
e Default value: -1
e Minimum value: -1

e Maximum value: 2

Controls cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for
aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Lawless, Li, Wikum, Udell, V, CPAIOR'25

LLM for cold-start configuration pipeline

LLM for cold-start configuration pipeline

Problem description

[Text summary)
(LaTeX model]

Cutting Plane

description

(Parameter name)
(Text description)

LLM inputs

LLM for cold-start configuration pipeline

Problem description

[Text summary)

(LaTeX model) .

LLM

Cutting Plane
description

(Parameter name)

[Text description)

LLM inputs

LLM for cold-start configuration pipeline

repeat n times

)
N/

Problem description

[Text summary)

(LaTeX model) .

LLM

Cutting Plane
description

(Parameter name)

[Text description)

LLM inputs

LLM for cold-start configuration pipeline

repeat n times

)
N/

Problem description

[Text summary)
[Config 1)
(LaTeX model) .
[Config 2)

LLM —
[Config 3)
description

/ Confi
(Parameter name) ontign
[Text description)

LLM inputs

Cutting Plane

Configuration
POoO|

LLM for cold-start configuration pipeline

repeat n times

)
N/

Problem description

[Text summary) [
Config 1)

(LaTeX model] .
[Config 2)
Cluster

LLM —> — :
[Config 3) Contigs

Cutting Plane

description

/ Confi
(Parameter name) ontign
(Text description)

LLM inputs

Configuration
POoO|

LLM for cold-start configuration pipeline

repeat n times

)
N/

Problem description

[Text summary) [
Config 1)

(LaTeX model] .
[Config 2)
Cluster

LLM —> — :
[Config 3) Contigs

Cutting Plane

description

/ Confi
(Parameter name) ontign
(Text description)

LLM inputs

Configuration K-medoids
ofele] cluster

LLM for cold-start configuration pipeline

repeat n times

"
A
Problem description
[g Medoid A
Text summary) .
[Config 1) /\ config | v,
(LaTeX model] AW . ~ Modoid ™
Contig 2 P |
Cluster 9 config 2 y

LLM —> — :
. [Config 3) Configs
Cutting Plane

description
/ (Confign) 4)
Parameter name \ Medoid

config k
(Text description) \- /

Configuration K-medoids

LLM inputs
ofele] cluster

LLM for cold-start configuration pipeline

repeat n times

"
N/

Problem description

(. g Medoid A
ext summary) :
(Config 1) _config T
LaTeX model) 4)
((Config 2) I\/Iecimd
. _ con ig 2 y
| (Config 3)
Cutting Plane
description o
(Parameter name) C Config n) g Medoid)
config k
(Text description) \- /
Configuration K-medoids

LLM inputs
ofele] cluster

LLM for cold-start configuration pipeline

repeat n times

"
A
Problem description
[.) g Medoid A
ext summary :
[Config 1) /\ config | J\
(LaTeX model] W . 4 Medoid N Test k
Config 2 — ' ~ configs
Cluster _ contig 2

/ & {Conﬂg)

return

LLM —> — :
[Config 3) Contigs

Cutting Plane

description y. U U best
(Parameter name) (Config n) \(Medoid \/
config k
(Text description) - J
Configuration K-medoids Final
LM inputs N ' o

POoO| cluster configuration

Experimental set-up

Baselines and our method

® Pruning: turns off all CPs not used while solving validation set

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Experimental set-up

Baselines and our method

® Pruning: turns off all CPs not used while solving validation set
® Use the default setting for other CPs

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Experimental set-up

Baselines and our method

® Pruning: turns off all CPs not used while solving validation set
® Use the default setting for other CPs

e Search(d): sample d candidate configurations uniformly at random

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Experimental set-up

Baselines and our method

® Pruning: turns off all CPs not used while solving validation set
® Use the default setting for other CPs

e Search(d): sample d candidate configurations uniformly at random

® Use the one with best median performance on validation set

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Experimental set-up

Baselines and our method
® Pruning: turns off all CPs not used while solving validation set
® Use the default setting for other CPs

e Search(d): sample d candidate configurations uniformly at random

® Use the one with best median performance on validation set

® Zero-shot: use medoid of the largest cluster

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Experimental set-up

Baselines and our method
® Pruning: turns off all CPs not used while solving validation set
® Use the default setting for other CPs

e Search(d): sample d candidate configurations uniformly at random

® Use the one with best median performance on validation set

® Zero-shot: use medoid of the largest cluster

e Cold-start(k):

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Experimental set-up

Baselines and our method

® Pruning: turns off all CPs not used while solving validation set
® Use the default setting for other CPs

e Search(d): sample d candidate configurations uniformly at random

® Use the one with best median performance on validation set

® Zero-shot: use medoid of the largest cluster

e Cold-start(k):

1. Run k medoids clustering

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Experimental set-up

Baselines and our method

® Pruning: turns off all CPs not used while solving validation set
® Use the default setting for other CPs

e Search(d): sample d candidate configurations uniformly at random

® Use the one with best median performance on validation set

® Zero-shot: use medoid of the largest cluster

e Cold-start(k):
1. Run k medoids clustering

2. Select the best performing medoid on the validation set

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Experimental set-up

Datasets, model

Dataset

vars # constrs

Binary packing
Capacitated facility location
Combinatorial auction
Maximum independent set
Max cut
Packing
Set cover

Load balancing

Middle-mile consolidation
network design (MM)

300
100
100
500
54
60
500

300
100
500
1088
134
60
250

64340 61000

569

2438

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Experimental set-up

Datasets, model

Dataset

vars # constrs

Binary packing
Capacitated facility location
Combinatorial auction
Classic MILP tamilies Maximum independent set
Max cut
Packing

Set cover

Load balancing
Complex real-world

MILP families

Middle-mile consolidation
network design (MM)

300
100
100
500
54
60
500

300
100
500
1088
134
60
250

64340 61000

569

2438

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Experimental set-up

Datasets, model

Dataset # vars # constrs Model: GPT-40
Binary packing 300 300
Capacitated facility location| 100 100 Training set size: 100
Combinatorial auction 100 500 Val set size: 30
Classic MILP tamilies ~ Maximum independent set| 500 1088
Max cut >4 134 Evaluation metric:
Packing 60 60

% improvement over

Set cover 500 250 default solve time

Load balancing 64340 61000
Complex real-world

MILP families Middle-mile consolidation

9 24
network design (MM) >0 :

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Empirical results
Cold-start(5) yields 6-71% faster runtimes than SCIP’s default

Problem Pruning Search(5) Search(500) Zero-shot Cold-start(5)

Bin. pack. | 1.33 9.23 39.3 16.76 38.35
Cap.fac. | -0.64 9.57 2.72 /.61 26.12
Comb. auc.| 1.96 58.1 64.01 21.06 63.59
Ind. set 2.07 26.95 67.01 21.6 71.95
Max.cut | -2.18 17.72 69.63 71.43 71.01
Pack. 15.87 -13.81 24.49 15.09 25.51
Set cov. 6.62 -10.04 61.08 61.72 61.74
Load bal. 0.08 -150.01 -50.02 0.0 6.37
MM -0.12 -8.83 50.03 -6.52 53.3

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Empirical results
Cold-start(5) yields 6-71% faster runtimes than SCIP’s default

Problem Pruning Search(5) Search(500) Zero-shot Cold-start(5)

Bin. pack. | 1.33 9.23 39.3 16.76 38.35
Cap.fac. | -0.64 9.57 2.72 /.61 26.12
Comb. auc.| 1.96 58.1 64.01 21.06 63.59
Ind. set 2.07 26.95 67.01 21.6 71.95
Max.cut | -2.18 17.72 69.63 71.43 71.01
Pack. 15.87 -13.81 24.49 15.09 25.51
Set cov. 6.62 -10.04 61.08 61.72 61.74
Load bal. 0.08 -150.01 -50.02 0.0 6.37
MM -0.12 -8.83 50.03 -6.52 53.3

By testing only 5 configs,
we match/beat Search(500)
on all instances

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Empirical results
Cold-start(5) yields 6-71% faster runtimes than SCIP’s default

Problem Pruning Search(5) Search(500) Zero-shot Cold-start(5)

Bin. pack. | 1.33 9.23 39.3 16.76 38.35
Cap.fac. | -0.64 9.57 2.72 /.61 26.12
Comb. auc.| 1.96 58.1 64.01 21.06 63.59
Ind. set 2.07 26.95 67.01 21.6 71.95
Max.cut | -2.18 17.72 69.63 71.43 71.01
Pack. 15.87 -13.81 24.49 15.09 25.51
Set cov. 6.62 -10.04 61.08 61.72 61.74
Load bal. 0.08 -150.01 -50.02 0.0 6.37
MM -0.12 -8.83 50.03 -6.52 53.3

By testing only 5 configs,
we match/beat Search(500)
on all instances

Without solving any MILPs,
we match/beat Search(500)
on

Lawless, Li, Wikum, Udell, V, CPAIOR'25

On out-of-distribution instances

25 families of problem from MILP-Evolve dataset

® New dataset, “evolving” pipeline for generating new MILP families

® Designed to be highly diverse to mimic real-world optimization scenarios

Search(5)

Search(500)

N

/ero-shot

Cold-start(5) A
-150 -100 -50 0 50 100

Relative improvement over SCIP (%)

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Ablations

Our design choices are robust

Setting Ind. set Max cut Bin. pack. MM

Ours /1.95 /1.01 38.35 53.3

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Ablations

Our design choices are robust

Setting Ind. set Max cut Bin. pack. MM

Ours /1.95 /1.01 38.35 53.3

Disable cutting planes | -14.96 71.25 3043 -150 Disabling CPs can reduce performance

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Ablations

Our design choices are robust

Setting Ind. set Max cut Bin. pack. MM

Ours /1.95 /1.01 38.35 53.3

Disable cutting planes | -14.96 71.25 30.43 -150

No CP text descr. 72.27 71.49 16.85 9.29

Disabling CPs can reduce performance

Our CP descriptions boost performance

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Ablations

Our design choices are robust

Setting Ind. set Max cut Bin. pack. MM

Ours 71.95 71.01 38.35 53.3

Disable cutting planes | -14.96 71.25 30.43 -150
No CP text descr. 7227 71.49 16.85 9.29

Ensembling strategies
Average configuration | 20.65 71.24 17.52 -11.08
Mode configuration 21.08 71.44 18.11

Smallest configuration | 20.83 70.91 17.42 -4.74

Disabling CPs can reduce performance

Our CP descriptions boost performance

-12.63 k-medoids outperforms simpler heuristics

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Recap

Can we use LLMs to configure MILP solvers with minimal training data?

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Recap

Can we use LLMs to configure MILP solvers with minimal training data?

® New LLM-based framework to configure cutting plane separators

® Finds high-performing configuration by solving only a few MILPs

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Recap

Can we use LLMs to configure MILP solvers with minimal training data?

® New LLM-based framework to configure cutting plane separators
® Finds high-pertforming configuration by solving only a few MILPs

® Ensembling strategy to build portfolio of high-performing contigurations

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Recap

Can we use LLMs to configure MILP solvers with minimal training data?

® New LLM-based framework to configure cutting plane separators
® Finds high-pertforming configuration by solving only a few MILPs
® Ensembling strategy to build portfolio of high-performing contigurations

® Requires no custom solver interface

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Recap

Can we use LLMs to configure MILP solvers with minimal training data?

® New LLM-based framework to configure cutting plane separators

® Finds high-pertforming configuration by solving only a few MILPs

® Ensembling strategy to build portfolio of high-performing contigurations
® Requires no custom solver interface

o Competitive with existing configuration approaches

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Recap

Can we use LLMs to configure MILP solvers with minimal training data?

® New LLM-based framework to configure cutting plane separators

® Finds high-pertforming configuration by solving only a few MILPs

® Ensembling strategy to build portfolio of high-performing contigurations
® Requires no custom solver interface

o Competitive with existing configuration approaches
but only requires a fraction of the training data and computation time

Lawless, Li, Wikum, Udell, V, CPAIOR'25

Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search for MILP heuristics
a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways

LLMs for automated heuristic design

LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization

LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

® Automated heuristic design/scheduling goes back to the 1960s

LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

® Automated heuristic design/scheduling goes back to the 1960s

® Automated heuristic design with LLMs:

LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

® Automated heuristic design/scheduling goes back to the 1960s

® Automated heuristic design with LLMs:
® | | Ms generate heuristic code

LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

® Automated heuristic design/scheduling goes back to the 1960s

® Automated heuristic design with LLMs:
® | | Ms generate heuristic code
® Heuristic fitness scored automatically

LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

® Automated heuristic design/scheduling goes back to the 1960s

® Automated heuristic design with LLMs:
® | | Ms generate heuristic code
® Heuristic fitness scored automatically
® Evolutionary selection keeps improved heuristics

EVO'UtiOn Of Heu riStiCS [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24]

Example: Online bin packing

® Task: Pack items of varying sizes into fewest bins

Figure by Fawzi, Romera-Paredes

CIEE L Em

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

EVO'UtiOn Of Heu riStiCS [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24]

Example: Online bin packing

® Task: Pack items of varying sizes into fewest bins

® |tems arrive sequentially

Figure by Fawzi, Romera-Paredes

l=l=l=lnl=

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

EVO'UtiOn Of Heu riStiCS [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24]

Example: Online bin packing

® Task: Pack items of varying sizes into fewest bins

® |tems arrive sequentially
® Must be packed into a bin immediately

Figure by Fawzi, Romera-Paredes

l=l=l=Inl=

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

EVO'UtiOn Of Heu riStiCS [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24]

Example: Online bin packing

® Task: Pack items of varying sizes into fewest bins

® |tems arrive sequentially
® Must be packed into a bin immediately
® No knowledge of future arrivals

Figure by Fawzi, Romera-Paredes

l=l=l=Inl=

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

EVO'UtiOn Of Heu riStiCS [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24]

Example: Online bin packing

® Task: Pack items of varying sizes into fewest bins

® |tems arrive sequentially
® Must be packed into a bin immediately
® No knowledge of future arrivals

® Each bin has fixed capacity (experiments: C = 100)

Figure by Fawzi, Romera-Paredes

l=l=l=nl=

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Heuristic representation

s Heuristic

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Heuristic representation

s Heuristic

" Code

def heuristic(item, bins):

miiw

item: scalar 1tem size
bins: 1D np.array of remainling capacities

returns: per-bin scores (higher 1s better)

J

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Heuristic representation

4 o _ oo)
Heuristic
- N (e 4o A
Code Natural language description
def heuristic(item, bins): Incorporates a weighted average of the
e utilization ratio, dynamic adjustment, and an
item: scalar item size exponentially decaying factor, with different
bins: 1D np.array of remaining capacities parameter settings to minimize the number of
returns: per-bin scores (higher is better) used bins.
\ AN J
_ J

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Heuristic representation

4 o _ oo)
Heuristic
(\ ([) o \
Code Natural language description
def heuristic(item, bins): Incorporates a weighted average of the
e utilization ratio, dynamic adjustment, and an
item: scalar item size exponentially decaying factor, with different
bins: 1D np.array of remaining capacities parameter settings to minimize the number of
returns: per-bin scores (higher is better) used bins.
\ AN J

. Fithess: 0.0196)

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Fithess metric

® Test instances |[Romera-Paredes et al., Nature'24|s
® Five Weibull test instances, each with 5000 items

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Fithess metric

® Test instances |[Romera-Paredes et al., Nature'24|s
® Five Weibull test instances, each with 5000 items

® /b = lower bound on opt bin count [Martello & Toth '90]

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Fithess metric

® Test instances |[Romera-Paredes et al., Nature'24|s
® Five Weibull test instances, each with 5000 items

® /b = lower bound on opt bin count [Martello & Toth '90]

® n = number of bins used by heuristic

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Fithess metric

® Test instances |[Romera-Paredes et al., Nature'24|s
® Five Weibull test instances, each with 5000 items
® /b = lower bound on opt bin count [Martello & Toth '90]
® n = number of bins used by heuristic
A,

) across the test instances
n

e Fitness = avg (

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Algorithm overview

1. Initialization: generate N initial heuristics using Initialization Prompt

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Algorithm overview

1. Initialization: generate N initial heuristics using Initialization Prompt

2. Heuristic generation:

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Algorithm overview

1. Initialization: generate N initial heuristics using Initialization Prompt

2. Heuristic generation:
Apply 5 Evolution Prompts in parallel (SN new heuristics)

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Algorithm overview

1. Initialization: generate N initial heuristics using Initialization Prompt

2. Heuristic generation:

Apply 5 Evolution Prompts in parallel (SN new heuristics)
i. Select parent heuristic(s) to form prompt

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Algorithm overview

1. Initialization: generate N initial heuristics using Initialization Prompt

2. Heuristic generation:

Apply 5 Evolution Prompts in parallel (SN new heuristics)
i. Select parent heuristic(s) to form prompt
ii. LLM generates new thought and code

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Algorithm overview

1. Initialization: generate N initial heuristics using Initialization Prompt

2. Heuristic generation:

Apply 5 Evolution Prompts in parallel (SN new heuristics)
i. Select parent heuristic(s) to form prompt
ii. LLM generates new thought and code

lii. Evaluate fithess on test instances

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Algorithm overview

1. Initialization: generate N initial heuristics using Initialization Prompt

2. Heuristic generation:
Apply 5 Evolution Prompts in parallel (SN new heuristics)

i. Select parent heuristic(s) to form prompt
ii. LLM generates new thought and code

. Eva

uate fi

thess on test instances

iv. Add feasi

ole heuristics to population

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Algorithm

1. Initialization:

overview

generate N initial heuristics using Initialization Prompt

2. Heuristic generation:

Apply 5 Evolution Prompts in parallel (SN new heuristics)
i. Select parent heuristic(s) to form prompt

ii. LLM generates new thought and code

iii. Evaluate fi

thess on test instances

iv. Add feasi

3. Retain top N heuristics by fitness; return to Step 1

ole heuristics to population

X
X

X X
X X
X X

X X
X X
_ N
N

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Initialization prompt

4 A

® Help design a new heuristic that scores a set of bins to assign an item

_ /

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Initialization prompt

4 A

® Help design a new heuristic that scores a set of bins to assign an item

® |n each step, the item will be assigned to the bin with the maximum score

_ /

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Initialization prompt

4 A

® Help design a new heuristic that scores a set of bins to assign an item

® |n each step, the item will be assigned to the bin with the maximum score

® |[f a binis full, it will not be used

_ /

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Initialization prompt

4 A

® Help design a new heuristic that scores a set of bins to assign an item

® |n each step, the item will be assigned to the bin with the maximum score
® |[f a binis full, it will not be used

® The final goal is to minimize the number of used bins

_ /

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Initialization prompt

4 A

® Help design a new heuristic that scores a set of bins to assign an item

® |n each step, the item will be assigned to the bin with the maximum score
® |[f a binis full, it will not be used

® The final goal is to minimize the number of used bins

® Firstly, describe your new heuristic and main steps in one sentence

_ /

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Initialization prompt

4 A

® Help design a new heuristic that scores a set of bins to assign an item

® |n each step, the item will be assigned to the bin with the maximum score
® |[f a binis full, it will not be used

® The final goal is to minimize the number of used bins

® Firstly, describe your new heuristic and main steps in one sentence

_ /

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Evolution prompts

e E1 - Diverse exploration: generate entirely new heuristic ideas from scratch

e E2 - Shared-ldea variants: generate based on high-performing “themes”

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Evolution prompts

e E1 - Diverse exploration: generate entirely new heuristic ideas from scratch

e E2 - Shared-ldea variants: generate based on high-performing “themes”

M1 - Edit: modify an existing heuristic

M2 - Parameter tuning: fine-tune numeric settings or thresholds in code

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Evolution prompts

e E1 - Diverse exploration: generate entirely new heuristic ideas from scratch

e E2 - Shared-ldea variants: generate based on high-performing “themes”

M1 - Edit: modify an existing heuristic

M2 - Parameter tuning: fine-tune numeric settings or thresholds in code

e M3 - simplification: prune unnecessary components or redundant logic

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

>

Performance (objective)

M2, hybrid adjustment

diff = bins - item
Heuristic In&Qut | where(diff > (item * 3), (1 - diff / bins) * Is\gf{inléiw parameter
Input: item, bins E1, hybrid term — =~ E1, exponent term sqrt(diff + 3) + 0.8, (1 - diff / bins) * - ‘
e item: size of item I - (bins - item) / bins exp(-(bins - item)**2) sqrt(diff + 0.5) + 0.3) ~ .
= bins: bin capacities sqrt(bins - item + 1) ® 09929 0.9932 [F1n.a1.]
Output: scores ~ = : Heuristic
= scores: scores for 0.9928
assigning item 0.9927
E2, combination of utilization
and penalty r—————————————————— o R G N
cbrt(item) / (bins - item) — : # Human (Best Fit) | : 4 EoH :
(bins - item) < 0.4 * bins.max() @ o | S . | |
0.9825 | defheuristic(item, bins): | | The heuristic incorporates a weighted average of the utilization |
' I scores = item - bins : | ratio, dynamic adjustment, and an exponentially decaying factor, |
I return scores | | with different parameter settings to minimize the number of used |
E1, deviation from average e 5 | bins. I
abs(bins - np.mean(bins)) : :
s i def heuristic(item, bins): |
| | I s
| # FunSearch | : diff = bins-item # remaining capacity :
E2, utilization of cubic root ® @ I I | oXp = exp(diff) # exponent term |
Cbr,t(item) / (bins - 1tem) 0.9689 | def heuristic(item, bins): | : sqrt = sqrt(diff) # square root term |
' I max_bin= max(bins) I ulti = 1-diff/bins # utilization term |
: combl = (bins - max_bin)**2 / item : : comb = ult1 * sqrt # combination of utilization and square root :
M1: venalty for laree bins | comb? = bins**? / item**? | | adjust= where(diff > (item * 3), comb + 0.8, comb + 0.3) |
-+ penaity 5 ® I kKD ek || # hybrid adjustment term to penalize large bins |
(bins - item) < 0.2*bins.max() 0.9670 | comb3 = bins**2 / item™**3 || , , . I
' I scores = comb1 + comb2 + comb3 | hybr1d_e%<p = bins /((exp +0.7) *exp) |
| bins>iterm] bins>itern] | # hybrid score based on exponent term |
| scores Ins_l em | -score[bins>item : : s = bl @ adfin :
I scores|1:] = score[:-1] | # sum of hybrid score and adjustment |
e e L ® | |
{ Initialization] 09621 I return scores || return scores |
' | || |
- () 9620 \ y e J
>
1 S 10 15 20

Number of generations

Example: Online bin packing

Experimental setup

® Baselines:
® First Fit: place item in first bin that fits

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Experimental setup

e Baselines:
® First Fit: place item in first bin that fits
® Best Fit: place item in bin w/ least available space

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Experimental setup

e Baselines:
® First Fit: place item in first bin that fits
® Best Fit: place item in bin w/ least available space
® Published FunSearch heuristic as-is

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Experimental setup

® Baselines:
® First Fit: place item in first bin that fits

® Best Fit: place item in bin w/ least available space
® Published FunSearch heuristic as-is

® Problem sizes: 1000-10,000 items

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Experimental setup

® Baselines:
® First Fit: place item in first bin that fits

® Best Fit: place item in bin w/ least available space
® Published FunSearch heuristic as-is

® Problem sizes: 1000-10,000 items
e Capacities: C = 100 and C =500

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Example: Online bin packing

Experimental setup

e Baselines:
® First Fit: place item in first bin that fits
® Best Fit: place item in bin w/ least available space
® Published FunSearch heuristic as-is

® Problem sizes: 1000-10,000 items
e Capacities: C = 100 and C =500

e Each setting: 5 randomly generated instances

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Bin packing results

C=100 C=500
Method 1k items S5k items 10k items 1k items S5k items 10k items
First Fit 5.32% 4.40% 4.44% 4.97% 4.27% 4.28%
Best Fit 4.87% 4.08% 4.09% 4.50% 3.91% 3.95%
FunSearch 3.78% 0.80% 0.33% 6.75% 1.47% 0.74%
EoH 2.24% 0.80% 0.61% 2.13% 0.78% 0.61%

Metric: average gap to lower bound [Martello & Toth ‘90|

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24

Beyond EoH

Recent examples

e Reflective Evolution
® Uses verbal gradients and retlective critiques to guide evolution

Beyond EoH

Recent examples

® Reflective Evolution [Ye et al., NeurlPS'24]
® Uses verbal gradients and retlective critiques to guide evolution

® Multi-objective Evolution of Heuristic [Yao et al.,, AAAI'25]

Beyond EoH

Recent examples

® Reflective Evolution [Ye et al., NeurlPS'24]
® Uses verbal gradients and retlective critiques to guide evolution

® Multi-objective Evolution of Heuristic [Yao et al., AAAI'25]
® Evolves Pareto-optimal heuristics for multi-objective optimization

Beyond EoH

Recent examples

® Reflective Evolution [Ye et al., NeurlPS'24]
® Uses verbal gradients and retlective critiques to guide evolution

® Multi-objective Evolution of Heuristic [Yao et al., AAAI'25]
® Evolves Pareto-optimal heuristics for multi-objective optimization

® AlphaEvolve [Novikov et al., arXiv'25]

Beyond EoH

Recent examples

® Reflective Evolution [Ye et al., NeurlPS'24]
® Uses verbal gradients and retlective critiques to guide evolution

® Multi-objective Evolution of Heuristic [Yao et al., AAAI'25]
® Evolves Pareto-optimal heuristics for multi-objective optimization

® AlphaEvolve [Novikov et al., arXiv'25]
® Scales to file-level evolution

Beyond EoH

Recent examples

® Reflective Evolution [Ye et al., NeurlPS'24]
® Uses verbal gradients and retlective critiques to guide evolution

® Multi-objective Evolution of Heuristic [Yao et al., AAAI'25]
® Evolves Pareto-optimal heuristics for multi-objective optimization

® AlphaEvolve [Novikov et al., arXiv'25]
® Scales to file-level evolution
® Open-source version: OpenEvolve [Sharma, GitHub'25]

Beyond EoH

Recent examples

® Reflective Evolution [Ye et al., NeurlPS'24]
® Uses verbal gradients and retlective critiques to guide evolution

® Multi-objective Evolution of Heuristic [Yao et al., AAAI'25]
® Evolves Pareto-optimal heuristics for multi-objective optimization

® AlphaEvolve [Novikov et al., arXiv'25]
® Scales to file-level evolution
® Open-source version: OpenEvolve [Sharma, GitHub'25]
® |ntegrate with Deep Research methods: DeepEvolve [Liu et al., arXiv'25]

Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search tor MILP heuristics
a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Overview of approach

® EvoCut automates cut discovery using LLMs plus evolution

®
|
|
|
|
|
* |
o O\ 1
SN |

N
~
o . o
NS . 1
AN
< ¥
S |
N\ S|
\ Sia
\ I >«

\ |
N\ I
N
N |

o o

N\
N

/‘/‘("/‘/I
N

L 4

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Overview of approach

® EvoCut automates cut discovery using LLMs plus evolution
® |nitializes cut population; evolves via crossover and mutation

« o
|
|
|
|
|
* |
~ N |
>SN\ |
N
N
o . ®
A~ |
: ¥
S |
N\ S|
\ Sia
\ I >«
N I
N\ |
N
N |
o o
N
N\
L 4

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Overview of approach

® EvoCut automates cut discovery using LLMs plus evolution
® |nitializes cut population; evolves via crossover and mutation

® Empirically checks optimal-solution preservation and fractional separation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Overview of approach

® EvoCut automates cut discovery using LLMs plus evolution
® |nitializes cut population; evolves via crossover and mutation

® Empirically checks optimal-solution preservation and fractional separation

® Scores cuts by relative optimality-gap reduction

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Acceleration cuts
Inequalities added to speed up MILP solving

44[LP optimal solution j

Integer optimal solution

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Acceleration cuts
Inequalities added to speed up MILP solving

e Valid cut: doesn't separate any integer-feasible point

44[LP optimal solution j

Integer optimal solution

Valid cut

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Acceleration cuts
Inequalities added to speed up MILP solving

e Valid cut: doesn't separate any integer-feasible point

o Optimality-preserving cut: doesn't separate the opt integer-feasible point

44[LP optimal solution j

Integer optimal solution

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Acceleration cuts
Inequalities added to speed up MILP solving

e Valid cut: doesn't separate any integer-feasible point
o Optimality-preserving cut: doesn't separate the opt integer-feasible point

® EvoCut cuts aren’t proven optimality-preserving; empirically checked

44[LP optimal solution j

Integer optimal solution

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

E .
O .Y
Q ©

~
-
Q. 3
nr
S 3
@ 5
c =
n &
O) T
=l
mm O
() I
= 5
£
=
§ E
mm
w S

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

Edge variables: x;; € {0,1},Vi # j(traveli =

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

Edge variables: x; € {0,1},Vi # j (travel i - j

Order variables: u; € {1,...,n}(visit position

Fixup = 1 (start city); u; = 2 means travel I —

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

P J’ﬁ ‘\/’ \ \ / i =i P P T ~\.\\\
\ \ P / / \ Pe / \ s o,
\ AP 4 iy~ L o _ \ N = b
. ([J (] [] \ r e y /’ \g\'; /-‘ .\\ - =) } - 34 /’ .\‘/‘ o
. b e L '«\ 't A\ N [{ uT ‘\\
o o . . P o in. AR) .
() /. e (s NN o2 i >
A \ - / \ — 1 / ~X / P 1) A i
! N et / /‘ Y/ < A N A 1\ /S » N ‘ v /
— . L / / \ . e | \ | {d =
{ \‘\ ™~ \\ 1 ¥ 4 \ / / /\\ 5 Lga | L ’(\\
\ . o “~y \ - P \ \ \ » (_ ¥ Pe-
\// . . — \ — (\ » . v .\/ Y& T
\ \ \ .
~_ \ et -1 — A . -
- \ { L — VA -
- % [Ad N G VN
“ ¢ /™ R » Dt
|

pe ~—— \) L
\ . | \) \ { 5
\ \\\,, sl N :“ “c)) ’Z) -
f \/ LY N f r ey i VN * b "v’ /X ‘\" el "Ny
o ° ° ° ° _ -\ < P O N (R — N 2 \ N 7 NS ANF ™
) r \ A\ < . - 4 Nl L . \;,,, " y/ TN\
° AR “Rew o o | V. M~_/ X ,./ 3 N ey PAS PO
o eeo o — Y T ek, e f T N, S
l & Y/ / " > - / o, (A4 e < | ' ..P
/ / s el O s 7 . <
T, - | [AN JERN & 7 7 i L)
7 " l NS)i \ \ & & 'S
=W N T o AAN\N
™y 4/1~ 24l \‘ s '\ «“ “\ \ — ‘ v ’) /)
RS 5 / \ N ‘ \ - / / o
® ° ® LI \/ ~— \ [™ \ \ 7 o~ < | /
%\ (\ N X \ \ < VT 3 \ \
. O O & e 7 \ H‘i \ ‘ b Y S 9 \ e
& PNt D . s i I P "3
] _, e A » [7 / N\
I — ~ \\ L ad L\ ‘,,4\ N ‘l‘n / Y.q\\ \»\ //4/‘L
N N \ e M \ L~ & o ’
— - N S ~ / Py \\’/,;
\v-“ —%\ ')

Objective: min Z ¢;iX;; (¢;; is the cost to travel 1 —)
iF]

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

. —
i\ ¢\ — . [i WY
s \ / p— — > g / -
® \ ~, < N 7N\ X /& "T \-]
N e) A 4 I o N \ ™ a
. o o g /" . .‘ Lan 1 - p 7 ‘(\ N L\\ /'q\, ;‘. Q\/‘ L
= v \ ¢ - /;u o g P \ VP P 7 A . \
R > ‘ / » % A ¢ o AL TR T $ N
LN - A4 / / X \ ¢
i \ { / \ L
4. ™ » =y A\ & — \ g .
| \ \ / i e —
A\ i ; € e XA
/ b N \ !) 3 — \
). 4 \\ _— — t.,_r‘ - i ‘1777v 4 ~— J / § N
{ Vg A § \ Tk (/ [Ads 7 ~x U M AT " L) /\\) o) AN
. [] [] [J [J acd “ —\ 4. > "‘_, & / - . ~ \ \ N/ / N A Pl i
.) I | /N N, € s W S 3 \ J. / y S \ ViR
: N i ™ e / Py i ,/ DS
\\// 4 \\ . ‘[Y ‘ B ‘\'{ , [P - x A ‘ P b () . § o 4 —
, LA A ’ et PN [» b & — = e S Y . 1SNy =,
< Rl b/ / } — / —] — ~>;:»\ B \/
¥ e / L \ /& 3 [s 7 N vl o 5
2 e ‘ L/ ¥ [\ ! o T
p \ e) s S % { \ S A |
=] ;—j\‘v { T \b\v il \\ ‘c‘\ \ e Y \\\ A 2\ s —a lf“
RS . / \ f % | / \ \ — &
» — . o LI \/ \ / < \ | R T { 4 » MY | ~ A
— i S T L ‘ vV |\ § \ \ < \ | t /
I ¢ 2.~ Y A e P! \ yw"ﬁ \] \; & i \ A
A/ - \ " Sz s \ \) "
« / A I\ A ! p »q \ /
[] I N/ e /TN » [& 74 /X / v
I - \ A ad Lo~ 1| / W\
N S | N \ Lo N
" ke w / N e a
e , @ % 7) 2N
I LV, N
i Y

Objective: min Z ¢;iX;; (¢;; is the cost to travel 1 —)
iF]

Degree constraints (enter/leave exactly once): Z X = 1, Z x.=1, Vi

ol JFl

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

. po
,"1 ('/ \ — - e
P { > p— — A = { ~
< l \ i (,/ g faa ‘ ’./ 1“ L4 “e. .
o ° ° ° ° NP T S G ¥ T W
. | SN 1/ ~ / N ——ari) — N ol R
. . o - (_\ '/,’ . I -~ —_— P > , .w\‘ L\\ P :\. Q\'/‘ i [
N \ 4 W e \ AN A Y N\ o X
\ / » /A v\ « Lo Y N
i «~ L A L / / S A =
B I\ \ A L = A At
A\ ¥ h (. _
N — W \ . e au X | \ o R N
A /,//.k w O\ N ' it — [. Vo E -' e / \L 3 A A
[\ N 1 . > ~k—— / [o N AT Y
o { ¥ Z S S [+ N>/ " L N) R /> e,
° ° ° ° Rge ek -~ AL \ ¢ ¥4 Y, — * \ T~ Y NS A\ 7\
. I \ | (‘ . \, C « e} P~ |} _ . ‘\ e) / / -~ '3: X
. N\ N \ o / / | — 7 @ / AN s
< 1/ ~/ A) "~ / t 52 Pl ik v]
;‘L ‘ 3 'w‘ ‘,s 2~ \ !s ‘; — ‘/ J!»—f —_— pee 2 / » "'.{,, " /n. <.
o\ ./ / < \ | {;) / \
. L 7 « | v s ¢ L % A)% b
Ay oel. b » 2 \ — £ X 2
P T4 ‘) f RN] / £N N See
) ® L4 Ly \{ % “ [N T \ [7 ‘ < < - ™ /
> A d \ N A . vy) Y g e \
—— [] I N/ e /N N r} 74 /X / e
\) { N { / \ 4 A
I N R X @ Ko Y L/ "\
—_ y TN, /) A
\uu; L,;{\ ."b': ‘ “
N P s |

Objective: min Z ¢;iX;; (¢;; is the cost to travel 1 —)
iF]

Degree constraints (enter/leave exactly once): Z X = 1, Z Xij = 1, Vi

Veal! Veal!
Subtour-elimination: i — i+ nx; < n— I, Vi#j, i1,j€{2,...,n}

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

A a /S
At | “/) P - Priag —_— el/ .\\‘\
\ Al ML L W b % W e y
ge variables: — ELRSNAN T,
o o R 2 > | (I | A P “ N
o : 1\ L7 ¢ ¢ S >N\ [V
l] , , 1 S < S 'u//- P! 1// - 4 \“ '?" S~ \‘.7 \¢ "\‘w o ']) 9
— ’ [Q / / b A - / —
\ - \ ~ / Z \\: G ,'\\ ks :
\\// e D ') \v‘/, \\\ \ -

. . B -~ \ C ; \ o g
\ < [S Sy f Y~ \
\ N N~ 3 \ / P\ g \
\ " — - ARG \ 4 / \ LN \
! V' \« AT 7 [A& 2 R B \'“J\ i \ kA W N &"“a\\“-’.‘v\\ .
Y 4 \ I A / \ \) % /% 7N 4
o ° ° ° ° -)\ . X Pt B . (R N \ \ Y N A & N
g j’ \ (, ~ N\ < = o) Tt) o / ¢ / Nl 4 .\
\ . N @5 L | N—e—3 / / 1 — 7 ey / AN 2
. v 4 i ‘ 1 \ | . X A/ ‘ P (. — o ¥
. [) ==\ p ~ . M \, L \ / A § $ \"‘ P e P A 2= -~
o 00 ™\, /Y , N ¥ = = 7 R R e v 1=y =,
p y / / /) o~ ey < \/ ¥
\. / /X 7 —) . &
. . o 10 s B & il I t
. , W g | i A) 4 ’ °

Vi \“ e 4"!“ ~ Z ‘ ? T I \ { v) /,, ¢ "
°) Py [N \ [\ / | A I / 3 " j
— [— L T Tl Py > du A ,4{ < \ ‘) & 3 Pe
N \— A vy) b« 7 2
— ° — « // e LN [/i R /
I e ™ 4 ! 4 N / o N A
®* N [1 \ N
e, \ v . N \ Lo g
TR y ¥ N / d X/
N & LV,
™ o |

(Very simple) example of a CP found by EvoCut:

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

A 7N — A
il \ R) 4 [P — < e
. ([J [} [] \ A T/ ,"{""\ 4 \V4 \ \ T T
& R T "W A \ I Y L |
A \ 7 . . \ /&y F{ . \
o e PR / / X =N / -
\ ~ \‘ J‘ ")'/7 % \: . -
D T \ e - oy
\ o {

X s }v \
FT — ‘ =<
A N\ N
\ A\
\ 7\ Po-
\
Y

" s \ \
PN TN R | \ \) .\ N
N -~ \ \ N N / \ \, \ ¢ Nz
% N T N h \ / - \ \ %
| / \ N & > —— [\ A e A
[v 4 \ & P AS 1 < \ SR /N . N
§ / / \ \ |) 7/ > N
. [] [] [] [~ oy —\ o U y [N ., \ I 7 NA & 7
. I \ [; . N, N\ P — | _jl 2 y . -} / \ "3 \
A N & Ny Yt 7 / | — A b / AN
S N Y R xohd 1 % b ke et
° ="\ i g -). \, L \ / I /N ¥ o > \ gl P »
K AL/ B / / N o / | / \ L/ «—
® X k% N — V[T L L7 e AR s
¥ ’ o] TS A T
\ [Y i A S . d
L . “ 1 e, / P/ P / -
- s s L s LKA 2 A

- N s e Al P TV 2
® [] [L ““\\‘ / P % \ / \, | \ /of/,i - /) \ | ¥ P
— [] — L R v P 7 A A **"ﬁ A \ ‘ D X — |
N v 'Y -~ N—p * T \ » 0 patal A
— ° — n\\‘ . / e -~ \\"v,, N . ’} P / AN y 2
I —d ‘\\\ !“. ..“ L\ o d \ ,““ / ,"\\ \\\‘/,«x
& Ne- AN L » n“. Lo J"’ " a ’
— N SN) \/
- e 8/
N P s |

(Very simple) example of a CP found by EvoCut:
u; <2+ m—-2)(1 —x),Vj € {2,...,n}

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

\ —
‘vy‘ \ (/ \ — e
| \ s [4 — ..
P V / ~, / A L d) o SN a4
Y, % P N Y (L
A \ & / \ 5 \ 7 / P » 1 2,
l N | / S 7 A h A) ~. L, Yt K K o
. . PR / / b \ 3 \ " |
. S \ / / \ o R
¢ ™ TN \N— i} \ Z '.n, Ll
| 9 L4 \ — ——
~— \ \ / : o
| e\ T z . T s
P S R -~)) R e »\‘.
) s B N Fan . \ L7 / L X n
/ \ S P ! P sl) A eee A
\/ A ¢ \ ' I Ale 7 1 0 » /X) r'/\\) \'\’——- - *
. ° ° ° ° o g —\ "o "‘_, ["/ -\\] ;':‘ \ | B I /’i‘ NP, B AN)
f N | / o - W g | S G / /, 9 V2R
. =N N N R L S 4 /N N w2 N ey A "
;) o ¥ 4| [~\ /< R T o g I <,
r Gt 5] - « \\‘ ! 89 - ‘.n“ \ '/&_\; \\\ //«) & g o, '] o
° ° b YN N[™ | k. ¥ | 'i ‘ ’o.f"i i < [<\
/ k. \ —) » . /
— « /Nt g A A | i / P« \i"
[] I N/ e /N R [& 74 /X / ’
— Y N 7 il o N
. » L 4 N
S L*ﬁ“\ Y v
N Vi |
» 3 \

(Very simple) example of a CP found by EvoCut:
u; < 24+ (n—2)(1— xlj),‘v’j e {2,....,n}
° Ifxlj = 1, u; < 2 (travel 1 —)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

:’;1 ‘//\\ Y
> . 1 / P—a
il \ i N
. — & ""\\ < 4 X \\,‘
. o o V NG A » Y N I |
k \ [~ 8 ¢
l , , o) \ 2 { iy " - . \
N e | / » /
A\ s L / / X
N < \ 4 ./
s Nt B —— .
| - i - \ X
& — N——"" g \ - \\\ | ’ ,\ 1\ \ \»\
/s \u \ S p = \ \
/ 20 B U = I N\ Pty w
L ¥ .// £ X i P AS N 1 il LAY /N N
. [J [J [J [] %, L —\ A A /™ / . X \ | B I N2, P B
o ol \ | 72N L4 & _A o g 1} \ =y Z / . \
° e AN CHTH D VN7
A\, ™ | % \ Y . x i 1 L s i Tl
L] =N\ y A/ L L I~/ g’ J o> ey t/""v. - o
. , [I BN J ’ \ N y /Y , Qg s e i ¥ e 4\77 . & y \ \‘ ¥ .:‘ q. \P
AR~ ~/ / } / — /) =< B J ‘
) e v 4 | “v‘ Y i Y ‘/“ ‘1 o ‘/ j;’ T ,,,7; % L X e o //n. & :
& Ny @ L / l & \ /) X L N
! a8 ;_;\\; ¢ 4 Ne N = \ sy \\\/,/)\ & - . ¥ .
® [] [] I T N . ,,¢?%' \ / N o — " . \ \ » /
EE— g g we \ L | \ \ ¢ ™ { - \ | Y g
[] b "a',' A il \ va"ﬁ \ < .& @ “ /‘(,
NS AT T D V7
] N " /N I~/ /X / 1
l - AN X ad Lo~ 1 / W A
— = N 1% oy "/’ { x /
N b 8/ N
- N P s |

(Very simple) example of a CP found by EvoCut:
u; < 24+ (n—2)(1— xlj),‘v’j e {2,....,n}
° Ifxlj = 1, u; < 2 (travel 1 —)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Data preprocessing

® Construct evaluation set D, and verification set D, of MILPs

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Data preprocessing

® Construct evaluation set D, and verification set D, of MILPs

® On D,: run baseline solver Vz € D, under fixed computational budget

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Data preprocessing

® Construct evaluation set D, and verification set D, of MILPs

® On D,: run baseline solver Vz € D, under fixed computational budget

® Record terminal optimality gap gap (2

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Data preprocessing

® Construct evaluation set D, and verification set D, of MILPs

® On D,: run baseline solver Vz € D, under fixed computational budget

® Record terminal optimality gap gap (2

® On D,: run baseline solver to optimality and store optimal solution

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Data preprocessing

® Construct evaluation set D, and verification set D, of MILPs

® On D,: run baseline solver Vz € D, under fixed computational budget

® Record terminal optimality gap gap (2

® On D,: run baseline solver to optimality and store optimal solution
® Also store solution to LP relaxation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

How to verify and evaluate a candidate cut

® \erification on D,

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

How to verify and evaluate a candidate cut

® \erification on D,
1. Code must compile; errors trigger diagnostic prompt, retry

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

How to verify and evaluate a candidate cut

® \erification on D,
1. Code must compile; errors trigger diagnostic prompt, retry

2. OSP: maintains feasibility of optimal solutions across D,

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

How to verify and evaluate a candidate cut

® \erification on D,
1. Code must compile; errors trigger diagnostic prompt, retry

2. OSP: maintains feasibility of optimal solutions across D,

3. Usefulness: separate LP-optimal solution on some D, instance

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

How to verify and evaluate a candidate cut

® \erification on D,
1. Code must compile; errors trigger diagnostic prompt, retry

2. OSP: maintains feasibility of optimal solutions across D,

3. Usefulness: separate LP-optimal solution on some D, instance

® Run baseline solver Vz € D, instances under tixed computational budget

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

How to verify and evaluate a candidate cut

® \erification on D,
1. Code must compile; errors trigger diagnostic prompt, retry

2. OSP: maintains feasibility of optimal solutions across D,

3. Usefulness: separate LP-optimal solution on some D, instance

® Run baseline solver Vz € D, instances under tixed computational budget

® Record terminal optimality gap gap. +(z) with cut

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

How to verify and evaluate a candidate cut

® \erification on D,
1. Code must compile; errors trigger diagnostic prompt, retry

2. OSP: maintains feasibility of optimal solutions across D,

3. Usefulness: separate LP-optimal solution on some D, instance

® Run baseline solver Vz € D, instances under tixed computational budget

® Record terminal optimality gap gap. +(z) with cut

ga pref(z) o ga pCUt(Z)

o Fitness: average relative gap change over D,
9apP efl2)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Candidate cut generation

X X
L..xJ

q >
28 X X

.

- LR

08X X -

1. Initializer LLM seeds candidate cuts

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Candidate cut generation

o X
B8 X X
il R

X X

1. Initializer LLM seeds candidate cuts
® Uses model code and natural language description

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Candidate cut generation

o X
B8 X X
il R

X X

1. Initializer LLM seeds candidate cuts
® Uses model code and natural language description

2. Population evolved tor T generations

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Candidate cut generation

o X
i R
B8 3 X

X X

1. Initializer LLM seeds candidate cuts
® Uses model code and natural language description

2. Population evolved for T generations
e Elitism: carry top cuts into next generation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Candidate cut generation

o X
i R
B8 3 X

X X

1. Initializer LLM seeds candidate cuts
® Uses model code and natural language description

2. Population evolved for T generations
e Elitism: carry top cuts into next generation
® Selection: pick parents with probability proportional to fitness

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Candidate cut generation

o X
i R
B8 3 X

X X

1. Initializer LLM seeds candidate cuts
® Uses model code and natural language description

2. Population evolved for T generations
e Elitism: carry top cuts into next generation
® Selection: pick parents with probability proportional to fitness
® Reproduce: crossover (merge two parents) or mutation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Candidate cut generation

o X
i R
B8 3 X

X X

1. Initializer LLM seeds candidate cuts
® Uses model code and natural language description

2. Population evolved for T generations
e Elitism: carry top cuts into next generation
® Selection: pick parents with probability proportional to fitness
® Reproduce: crossover (merge two parents) or mutation

3. Verify and evaluate offspring before including in population

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Method overview

Candidate cut generation

o X
i R
B8 3 X

X X

1. Initializer LLM seeds candidate cuts
® Uses model code and natural language description

2. Population evolved for T generations
e Elitism: carry top cuts into next generation
® Selection: pick parents with probability proportional to fitness
® Reproduce: crossover (merge two parents) or mutation

3. Verify and evaluate offspring before including in population
® Failed offspring triggers teedback; retry up to max

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Experimental setup

® Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Experimental setup

® Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

® Benchmarks:

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Experimental setup

® Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

¢ Benchmarks:
e [SP

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Experimental setup

® Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

¢ Benchmarks:
® TSP
® Multi-Commodity Network Design (MCND)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Experimental setup

® Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

¢ Benchmarks:
e [SP

® Multi-Commodity Network Design (MCND)
® Capacitated Warehouse Location Problem (CWLP)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Experimental setup

® Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

¢ Benchmarks:
e [SP

® Multi-Commodity Network Design (MCND)
® Capacitated Warehouse Location Problem (CWLP)
® Job Shop Scheduling Problem (JSSP)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Experimental setup

® Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

¢ Benchmarks:
o TSP
® Multi-Commodity Network Design (MCND)
® Capacitated Warehouse Location Problem (CWLP)
® Job Shop Scheduling Problem (JSSP)

e |D,|=10,|D,| =2; drawn from synthetic generators

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Experimental setup

® Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

¢ Benchmarks:
o TSP
® Multi-Commodity Network Design (MCND)
® Capacitated Warehouse Location Problem (CWLP)
® Job Shop Scheduling Problem (JSSP)

e |D,|=10,|D,| =2; drawn from synthetic generators

e Test set D,: public datasets; 40 hard medium/large instances each

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Snapshot of results

Checkpoints 5s 10s 50s 150 s 300s OSP rate (%)
TSP 16.3 £24.9 15.4 = 27.3 27.7 £ 31. 44.4 + 27.7 57.4 +26.3 100
MCND 9.4 +21.1 6.3+22.0 11.7 £19.7 10.4+18.4 17.1 = 20.2 100
CWLP 6.9 +17.0 -8.3+15.1 24.0 £ 24.9 42.5 +21.3 46.2 + 41.1 100
JSSP 22.8 £ 18.3 28.8 £19.7 39.1£22.8 34.5 + 221 37.3+220 100

Relative mean gap improvement over D,

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Snapshot of results

Checkpoints 5s 10s 50s 150 s 300s OSP rate (%)
TSP 16.3 £24.9 15.4 = 27.3 27.7 £ 31. 44.4 + 27.7 57.4 +26.3 100
MCND 9.4 +21.1 6.3+22.0 11.7 £19.7 10.4+18.4 17.1 = 20.2 100
CWLP 6.9 +17.0 -8.3+15.1 24.0 £ 24.9 42.5 +21.3 46.2 + 41.1 100
JSSP 22.8 £ 18.3 28.8 £19.7 39.1£22.8 34.5 + 221 37.3+220 100

Relative mean gap improvement over D,

® Evolution helps: initializer-only cuts have lower success

[Check (i) code rejections, (ii) OSP rejections, (iii) usefulness rejections, and (iv) fitnessj

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Snapshot of results

Checkpoints 5s 10s 50s 150 s 300s OSP rate (%)
TSP 16.3 £24.9 15.4 = 27.3 27.7 £ 31. 44.4 + 27.7 57.4 +26.3 100
MCND 9.4 +21.1 6.3+22.0 11.7 £19.7 10.4+18.4 17.1 = 20.2 100
CWLP 6.9 +17.0 -8.3+15.1 24.0 £ 24.9 42.5 +21.3 46.2 + 41.1 100
JSSP 22.8 £ 18.3 28.8 £19.7 39.1£22.8 34.5 + 221 37.3+220 100

Relative mean gap improvement over D,

® Evolution helps: initializer-only cuts have lower success

[Check (i) code rejections, (ii) OSP rejections, (iii) usefulness rejections, and (iv) fitnessj

® Mutation/crossover succeed 63-82% attempits; initializer 25.4%

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Takeaways

® EvoCut: Evolutionary search automates cut discovery

-
N
~N
° o, o
\\
N
~
S |
So |
\ SIS
N\ I S«
N\ |
N\ |
N
N\ |
o o
N\
\
|
I
L

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Takeaways

® EvoCut: Evolutionary search automates cut discovery

® Optimal-solution preservation and fractional separation verified empirically

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Takeaways

® EvoCut: Evolutionary search automates cut discovery
® Optimal-solution preservation and fractional separation verified empirically

® Cuts improve optimality-gap reduction throughout solve trajectory

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25

Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search tor MILP heuristics
a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways

Ye, Xu, Yan, Cheng, ICML'25

LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

Ye, Xu, Yan, Cheng, ICML'25

LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

® | NS is effective; neighborhood choice dominates performance

Ye, Xu, Yan, Cheng, ICML'25

LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

® | NS is effective; neighborhood choice dominates performance
o \Without ML: Fischetti, Lodi, MP'03: Danna et al., MP'05: ...

Ye, Xu, Yan, Cheng, ICML'25

LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

® | NS is effective; neighborhood choice dominates performance

o \Without ML: Fischetti, Lodi, MP'03: Danna et al., MP'05: ...
e \With ML: Song et al., NeurlPS'20; Wu et al., NeurlPS'21; Huang et al., ICML23; ...

Ye, Xu, Yan, Cheng, ICML'25

LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

® | NS is effective; neighborhood choice dominates performance

o \Without ML: Fischetti, Lodi, MP'03: Danna et al., MP'05: ...
e \With ML: Song et al., NeurlPS'20; Wu et al., NeurlPS'21; Huang et al., ICML23; ...

® Prior neighborhood selection methods need expertise or heavy training

Ye, Xu, Yan, Cheng, ICML'25

LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

® | NS is effective; neighborhood choice dominates performance

o \Without ML: Fischetti, Lodi, MP'03: Danna et al., MP'05: ...
e \With ML: Song et al., NeurlPS'20; Wu et al., NeurlPS'21; Huang et al., ICML23; ...

® Prior neighborhood selection methods need expertise or heavy training

® Propose LLM-LNS: LLM-guided neighborhood scoring for MILPs

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases
® Destroy: fix most variables; free a selected subset

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases
® Destroy: fix most variables; free a selected subset
® Repair: solve resulting MILP subproblem

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases
® Destroy: fix most variables; free a selected subset
® Repair: solve resulting MILP subproblem

® Neighborhood choice controls search power and runtime tradeoft

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases
® Destroy: fix most variables; free a selected subset
® Repair: solve resulting MILP subproblem

® Neighborhood choice controls search power and runtime tradeoft
¢ Small neighborhoods: fast but limited improvement

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases
® Destroy: fix most variables; free a selected subset
® Repair: solve resulting MILP subproblem

® Neighborhood choice controls search power and runtime tradeoft
¢ Small neighborhoods: fast but limited improvement
¢ Large neighborhoods: powerful but expensive

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases
® Destroy: fix most variables; free a selected subset
® Repair: solve resulting MILP subproblem

Gor each integer variable x;: A
_ J

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases
® Destroy: fix most variables; free a selected subset
® Repair: solve resulting MILP subproblem

Gor each integer variable x;: A

® Fix all other integer variables to current values

_ J

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases
® Destroy: fix most variables; free a selected subset
® Repair: solve resulting MILP subproblem

Gor each integer variable x;: A

® Fix all other integer variables to current values

® Relax x; solve resulting LP

_ J

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases

® Destroy: fix most variables; free a selected subset

® Repair: solve resulting MILP subproblem

_

® [ix all othe

® Relaxx; so

" Intege

ve resu

Gor each integer variable x;: A

rvariables to current values

ting LP

® Measure deviation from integer solution value

J

Ye, Xu, Yan, Cheng, ICML'25

Large neighborhood search (LNS) for MILPs

® | NS improves feasible solutions by partial variable re-optimization

® |teration alternates between destroy and repair phases

® Destroy: fix most variables; free a selected subset

® Repair: solve resulting MILP subproblem

k‘

Gor each integer variable x;: A

Fix all other intege

Relax x;; solve resu

Measure deviation

rvariables to current values

-ree/destroy variables with largest deviationj

ting LP

from integer solution value

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods
® Select top-k scores; free (i.e., destroy) those variables in subproblem

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

® Select top-k scores; free (i.e., destroy) those variables in subproblem
e Example prompt:

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

® Select top-k scores; free (i.e., destroy) those variables in subproblem

e Example prompt:

.)
® Given feasible MILP solution, plus bounds and objective coefficients for variables

_ J

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

® Select top-k scores; free (i.e., destroy) those variables in subproblem

e Example prompt:

‘. . . L. _ .)
® Given feasible MILP solution, plus bounds and objective coefficients for variables

® Goal: improve the current solution using LNS

- J

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

® Select top-k scores; free (i.e., destroy) those variables in subproblem

e Example prompt:

‘. . . L. _ .)
® Given feasible MILP solution, plus bounds and objective coefficients for variables

® Goal: improve the current solution using LNS
® Description of LNS

- J

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

® Select top-k scores; free (i.e., destroy) those variables in subproblem

e Example prompt:

‘. . . L. _ .)
® Given feasible MILP solution, plus bounds and objective coefficients for variables

® Goal: improve the current solution using LNS
® Description of LNS

® You must score all variables tor neighborhood selection decisions

- J

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

® Select top-k scores; free (i.e., destroy) those variables in subproblem

e Example prompt:

~

® Given feasible MILP solution, plus bounds and objective coet
® Goal: improve the current solution using LNS
® Description of LNS

icients for variables

® You must score all variables tor neighborhood selection decisions
® Add some randomness in subset choice to avoid local optima and stagnation

J

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

® Select top-k scores; free (i.e., destroy) those variables in subproblem
e Example prompt:

® Given feasible MILP solution, plus bounds and objective coefficients for variables

® Goal: improve the current solution using LNS
® Description of LNS

® You must score all variables tor neighborhood selection decisions

® Add some randomness in subset choice to avoid local optima and stagnation

® m prior scoring rules: description, average fitness (objective value) over training set, code

_

J

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

® Select top-k scores; free (i.e., destroy) those variables in subproblem

e Example prompt:

‘. . . L. _ .)
® Given feasible MILP solution, plus bounds and objective coefficients for variables

® Goal: improve the current solution using LNS
® Description of LNS

® You must score all variables tor neighborhood selection decisions

® Add some randomness in subset choice to avoid local optima and stagnation

® m prior scoring rules: description, average fitness (objective value) over training set, code

C Create a totally different new scoring rule ,

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

® Select top-k scores; free (i.e., destroy) those variables in subproblem

e Example prompt:

‘. . . L. _ .)
® Given feasible MILP solution, plus bounds and objective coefficients for variables

® Goal: improve the current solution using LNS
® Description of LNS

® You must score all variables tor neighborhood selection decisions

® Add some randomness in subset choice to avoid local optima and stagnation

® m prior scoring rules: description, average fitness (objective value) over training set, code

C Create a totally different new scoring rule ,

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods
® Select top-k scores; free (i.e., destroy) those variables in subproblem

® Outer agent evolves prompts to improve inner strategies
e Example prompt:

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods
® Select top-k scores; free (i.e., destroy) those variables in subproblem

® Outer agent evolves prompts to improve inner strategies
e Example prompt:

® Goal: solve minimization problem by using LLM-generated LNS heuristics

_ /

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods
® Select top-k scores; free (i.e., destroy) those variables in subproblem

® Outer agent evolves prompts to improve inner strategies
e Example prompt:

® Goal: solve minimization problem by using LLM-generated LNS heuristics A
® \We already designed several initial prompts and collected the LLM's resulting heuristics
_ S

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods
® Select top-k scores; free (i.e., destroy) those variables in subproblem

® Outer agent evolves prompts to improve inner strategies
e Example prompt:

~

® Goal: solve minimization problem by using LLM-generated LNS heuristics
® \We already designed several initial prompts and collected the LLM's resulting heuristics

® Analyze each prompt and the objective function values achieved by LNS heuristic

_ /

Ye, Xu, Yan, Cheng, ICML'25

LLM-LNS framework: Method overview

Inner-outer agent

® Inner agent: prompted to score variables to define neighborhoods

® Select top-k scores; free (i.e., destroy) those variables in subproblem

® Outer agent evolves prompts to improve inner strategies

e Example prompt:

® \\e already designed several in
® Analyze each prompt and the o

_

® Goal: solve minimization problem by using LLM-generated LNS heuristics
itial prompts and collectec

njective function values ac

® Create new prompt w/ different structure, motivated by insights from prompt-value pairs

~

the LLM's resulting heuristics

nieved by LNS heuristic

_/

Ye, Xu, Yan, Cheng, ICML'25

Experimental setup

Benchmarks

® Benchmarks:
® Set cover (SC)
® Min vertex cover (MVC)
® Max independent set (MIS)

Ye, Xu, Yan, Cheng, ICML'25

Experimental setup

Benchmarks

® Benchmarks:
® Set cover (SC)
® Min vertex cover (MVC)
® Max independent set (MIS)

e Tested on instances with (on the order of) 10° variables/constraints

Ye, Xu, Yan, Cheng, ICML'25

Experimental setup

Benchmarks

e Benchmarks:
® Set cover (SC)
® Min vertex cover (MVC)
® Max independent set (MIS)

e Tested on instances with (on the order of) 10° variables/constraints

® Train on small-scale instances for scalable heuristic evolution

Ye, Xu, Yan, Cheng, ICML'25

Experimental setup

Benchmarks

® Benchmarks:
® Set cover (SC)
® Min vertex cover (MVC)
® Max independent set (MIS)

e Tested on instances with (on the order of) 10° variables/constraints

® Train on small-scale instances for scalable heuristic evolution
® Training instances are roughly 100x smaller than the test instances

Ye, Xu, Yan, Cheng, ICML'25

Experimental setup

Baselines

® Random-LNS: random variable neighborhoods in LNS

Ye, Xu, Yan, Cheng, ICML'25

Experimental setup

Baselines
® Random-LNS: random variable neighborhoods in LNS

e ACP: adaptive constraint propagation guides neighborhood choice
Ye et al., AAAI'23

Ye, Xu, Yan, Cheng, ICML'25

Experimental setup

Baselines

® Random-LNS: random variable neighborhoods in LNS

e ACP: adaptive constraint propagation guides neighborhood choice
Ye et al., AAAI'23

® CL-LNS: contrastive learning selects LNS neighborhoods
Huang et al., ICML'23

Ye, Xu, Yan, Cheng, ICML'25

Experimental setup

Baselines

® Random-LNS: random variable neighborhoods in LNS

e ACP: adaptive constraint propagation guides neighborhood choice
Ye et al., AAAI'23

® CL-LNS: contrastive learning selects LNS neighborhoods
Huang et al., ICML'23

¢ GNN&GBDT: ML pipeline combining graphs and boosted trees
Ye et al., ICML'23

Ye, Xu, Yan, Cheng, ICML'25

Experimental setup

Baselines

® Random-LNS: random variable neighborhoods in LNS

e ACP: adaptive constraint propagation guides neighborhood choice
Ye et al., AAAI'23

® CL-LNS: contrastive learning selects LNS neighborhoods
Huang et al., ICML'23

¢ GNN&GBDT: ML pipeline combining graphs and boosted trees

Ye et al., ICML'23

o Light-MILPopt: lightweight ML tframework tor MILP optimization
Ye et al., ICLR'23

Ye, Xu, Yan, Cheng, ICML'25

Experiments

Snapshot of results

(Max) set cover Min vertex cover Max independent set
10°] 5% 10° -
2 %X 10° -

6 x 103

g 4 % 10° -
.48’ 4 x10°
'8 3x10°

eeeee—— 105
3% 10° -
2 %107 -]
0 2000 4000 6000 8000 0 2000 4000 6000 8000 0 2000 4000 6000 8000
Time Time Time
—— Random-LNS — ACP CL-LNS —— Gurobi — GNN&GBDT —— Light-MILPOPT — | | M-LNS(Ours)

® || M-LNS is mostly Pareto optimal (see paper for many more experiments)

Ye, Xu, Yan, Cheng, ICML'25

Takeaways

® Prior neighborhood selection methods need expertise or heavy training

Ye, Xu, Yan, Cheng, ICML'25

Takeaways

® Prior neighborhood selection methods need expertise or heavy training

® LLM-LNS: LLM-guided neighborhood scoring tor MILPs

Ye, Xu, Yan, Cheng, ICML'25

Takeaways

® Prior neighborhood selection methods need expertise or heavy training

® LLM-LNS: LLM-guided neighborhood scoring tor MILPs

® |nner-outer agent evolves neighborhood selection heuristics and prompts

Ye, Xu, Yan, Cheng, ICML'25

Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search tor MILP heuristics
a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv'25

Evolutionary search for diving heuristics

® Diving: quickly explores a single path (a "dive") in the search tree

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv'25

Evolutionary search for diving heuristics

® Diving: quickly explores a single path (a "dive") in the search tree
® [teratively fixing fractional variables to integer values, solving LP relaxation

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv'25

Evolutionary search for diving heuristics

® Diving: quickly explores a single path (a "dive") in the search tree
® [teratively fixing fractional variables to integer values, solving LP relaxation
® Goalisto find a feasible integer solution

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv'25

Evolutionary search for diving heuristics

® Diving: quickly explores a single path (a "dive") in the search tree
® [teratively fixing fractional variables to integer values, solving LP relaxation
® Goalisto find a feasible integer solution

® Policy choices: variable order and rounding direction

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv'25

Evolutionary search for diving heuristics

® Diving: quickly explores a single path (a "dive") in the search tree
® [teratively fixing fractional variables to integer values, solving LP relaxation
® Goalisto find a feasible integer solution

® Policy choices: variable order and rounding direction

® DHEvo aims to evolve hard instances with improving heuristics

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv'25

Evolutionary search for diving heuristics

® Diving: quickly explores a single path (a "dive") in the search tree
® [teratively fixing fractional variables to integer values, solving LP relaxation
® Goalisto find a feasible integer solution

® Policy choices: variable order and rounding direction

® DHEvo aims to evolve hard instances with improving heuristics
® Multi-agent LLM generates MILP-heuristic pairs jointly

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv'25

Outline

1. Background
2. LLMs for speeding up solvers

3. Takeaways

Takeaways

® Solver defaults are rarely optimal: instance families vary widely in structure

Takeaways

® Solver defaults are rarely optimal: instance families vary widely in structure

® Many ways to integrate ML into solvers

Takeaways

® Solver defaults are rarely optimal: instance families vary widely in structure
® Many ways to integrate ML into solvers

® | | Ms can be leveraged in many ways to speed up solvers

Takeaways

® Solver defaults are rarely optimal: instance families vary widely in structure
® Many ways to integrate ML into solvers

® | | Ms can be leveraged in many ways to speed up solvers

® Solver configuration: LLMs as excellent information retrieval systems

Takeaways

® Solver defaults are rarely optimal: instance families vary widely in structure
® Many ways to integrate ML into solvers

® || Ms can be leveraged in many ways to speed up solvers
® Solver configuration: LLMs as excellent information retrieval systems

e Evolutionary search for MILP heuristics: LLMs to explore semantic search space

® (Cutselection

® |arge neighborhood search

® Diving heuristics

Thank you! Questions?

