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ML to speed up MILP solvers

• Modern MILP solvers expose hundreds of parameters

• Defaults are rarely optimal: instance families vary widely in structure

• Small changes can yield large runtime differences

• Many ways to integrate ML into solvers
• Potential for ML to provide significant speedups over defaults



Outline

1. Background 
i. Branch-and-cut (B&C) algorithm 
ii. Brief overview of ML for B&C: non-GenAI 

2. LLMs for speeding up solvers 

3. Takeaways
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• Explore search tree of restricted MILP subproblems
• Each node adds bounds on integer variables

• Solve LP relaxation to upper bound subproblem’s integer-feasible solution
• If integer-feasible: incumbent solution

• Branch by choosing a variable and splitting its domain

• Prune nodes whose bound can’t beat incumbent

• Terminate when all nodes pruned or proven optimal

Variable 
selection policy
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Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

MILP 
maximize    
subject to  
                    for all  

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Linear programming (LP) relaxation 
maximize    
subject to  
                    for all  

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Cutting planes (CPs) are additional constraints that:
• Separate LP optimal solution
• Don’t separate any integer point

Many different families of CPs; which to use when?

LP optimal solution
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General setup
ML for MILP solvers

• Define a parameterized solver . E.g.:A(θ)
•  are parameters exposed by Gurobiθ
•  are parameters of a neural network embedded in solverθ

• Specify distribution  over MILPs  (models application domain)D z

• Choose a performance metric ; e.g., runtimec(z, θ)

• Ultimate goal: minimize  (proxy of future cost on unseen MILPs)𝔼z∼D [c(z, θ)]
• Can learn offline  or instance-aware  configurationθ θ(z)
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• Early work: treat solver (largely) as a black-box; learn from evaluations

• Small subset of examples:

• ParamILS: iterated local search over parameter settings
Hutter, Hoos, Leyton-Brown, Stützle, JAIR’09

• SMAC: model-based search with surrogate predictions
Hutter, Hoos, Leyton-Brown, LION’11

• Portfolio-based algorithm selection
Lobjois, Lemaître, AAAI'98; Gomes, Selman, AI’01; Xu, Hoos, Leyton-Brown, AAAI’10; Kadioglu et al., ECAI’10, 
Sandholm, Handbook of Market Design’13
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Blackbox algorithm configuration
Example: Portfolio-based algorithm configuration

• One configuration rarely dominates across diverse MILP instances

• Portfolios combine multiple strong configurations

• Hydra iteratively grows portfolio via targeted reconfiguration
• Tune new member against instances current portfolio solves poorly

• Instance features enable per-instance selection (static & quick probing runs)
• Choose configuration before solving each instance

Xu, Hoos, Leyton-Brown, AAAI’10
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Graph neural networks for variable selection

• Key idea: encode B&B state as variable-constraint bipartite graph
• Use bipartite graph neural network as a variable selection policy

• Training: behavioral cloning of strong branching (expensive gold standard)

• Integrated in SCIP; four NP-hard benchmarks

• Results:
• Best imitation accuracy among ML baselines
• Generally faster than SCIP default; good size generalization

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurIPS’19
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Benchmarks

• MIPLIB 2017: widely used “real-world” MILP benchmark library
• Benchmark set: 240 instances, solvable, numerically stable
• Collection set: 1065 diverse instances, less filtered

• Distributional MIPLIB: library of MILP distributions [Huang et al., arXiv’24]
• More than 35 distributions across 13 domains
• Includes synthetic and real-world domains, multiple hardness levels

• MILP-Evolve [Li et al. ICLR’25]
• “Evolving” pipeline for generating new MILP families
• Designed to be highly diverse to mimic real-world optimization scenarios



Outline

1. Background 

2. LLMs for speeding up solvers 
i. Solver configuration 
ii. Evolutionary search for MILP heuristics 

3. Takeaways

Lawless, Li, Wikum, Udell, V, CPAIOR’25
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Key challenge
Conventional data-driven approaches require a lot of compute 

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs
2. Find configuration(s) with good average runtime over training set
3. Hope for a good runtime from the same application (or distribution)

Key challenge: Evaluating one configuration’s average runtime 
requires solving every MILP in the training set using that configuration

Key question: Can we generate problem-specific cutting plane configurations
with little to no historical data and compute?

Lawless, Li, Wikum, Udell, V, CPAIOR’25
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• First LLM-based framework to configure MILP solvers 

• Consistent improvement over solver default (SCIP and Gurobi) 
• Pareto-optimal compared to baseline methods

log(# MILP solves)

Lawless, Li, Wikum, Udell, V, CPAIOR’25

log(# MILP solves)

Avg improvement 
over SCIP (%)

Our method
Baselines

Avg improvement 
over Gurobi (%)

SCIP Gurobi
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Why LLMs

• LLMs are powerful, but they can’t do everything

• They are good at information retrieval

• There’s a rich literature on cutting planes

Lawless, Li, Wikum, Udell, V, CPAIOR’25
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Challenges to using LLMs

• LLM output can be highly unstable

• Cutting plane separators are solver-specific
• Details of solver separators are not always available 

Lawless, Li, Wikum, Udell, V, CPAIOR’25
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& 
 return 
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Medoid 
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K-medoids 
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Experimental set-up
Baselines and our method

• Pruning: turns off all CPs not used while solving validation set
• Use the default setting for other CPs

• Search : sample  candidate configurations uniformly at random(d) d
• Use the one with best median performance on validation set

• Zero-shot: use medoid of the largest cluster

• Cold-start :(k)
1. Run  medoids clusteringk
2. Select the best performing medoid on the validation set

Lawless, Li, Wikum, Udell, V, CPAIOR’25



Experimental set-up
Datasets, model

Dataset # vars # constrs

Binary packing 300 300

Capacitated facility location 100 100

Combinatorial auction 100 500

Maximum independent set 500 1088

Max cut 54 134

Packing 60 60

Set cover 500 250

Load balancing 64340 61000

Middle-mile consolidation 
network design (MM) 569 248
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Experimental set-up
Datasets, model

Classic MILP families

Complex real-world 
MILP families

Model: GPT-4o 

Training set size: 100 
Val set size: 30 

Evaluation metric:  
% improvement over 
default solve time 

Dataset # vars # constrs

Binary packing 300 300

Capacitated facility location 100 100

Combinatorial auction 100 500

Maximum independent set 500 1088

Max cut 54 134

Packing 60 60

Set cover 500 250

Load balancing 64340 61000

Middle-mile consolidation 
network design (MM) 569 248

Lawless, Li, Wikum, Udell, V, CPAIOR’25



Empirical results
Cold-start(5) yields 6–71% faster runtimes than SCIP’s default

Problem Pruning Search(5) Search(500) Zero-shot Cold-start(5)

Bin. pack. 1.33 9.23 39.3 16.76 38.35

Cap. fac. -0.64 9.57 2.72 7.61 26.12

Comb. auc. 1.96 58.1 64.01 21.06 63.59

Ind. set 2.07 26.95 67.01 21.6 71.95

Max. cut -2.18 17.72 69.63 71.43 71.01

Pack. 15.87 -13.81 24.49 15.09 25.51

Set cov. 6.62 -10.04 61.08 61.72 61.74

Load bal. 0.08 -150.01 -50.02 0.0 6.37

MM -0.12 -8.83 50.03 -6.52 53.3

Lawless, Li, Wikum, Udell, V, CPAIOR’25
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On out-of-distribution instances
25 families of problem from MILP-Evolve dataset [Li et al. ICLR’25]

• New dataset, “evolving” pipeline for generating new MILP families 

• Designed to be highly diverse to mimic real-world optimization scenarios

Relative improvement over SCIP (%) 

Search(5)

Search(500)

Zero-shot

Cold-start(5)
-150 -100 -50 0 50 100

Lawless, Li, Wikum, Udell, V, CPAIOR’25



Ablations
Our design choices are robust

Setting Ind. set Max cut Bin. pack. MM

Ours 71.95 71.01 38.35 53.3
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Setting Ind. set Max cut Bin. pack. MM

Ours 71.95 71.01 38.35 53.3
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Ablations
Our design choices are robust

Disabling CPs can reduce performance 

Our CP descriptions boost performance

k-medoids outperforms simpler heuristics

Setting Ind. set Max cut Bin. pack. MM

Ours 71.95 71.01 38.35 53.3

Disable cutting planes -14.96 71.25 30.43 -150

No CP text descr. 72.27 71.49 16.85 9.29

Ensembling strategies

Average configuration 20.65 71.24 17.52 -11.08

Mode configuration 21.08 71.44 18.11 -12.63

Smallest configuration 20.83 70.91 17.42 -4.74

Lawless, Li, Wikum, Udell, V, CPAIOR’25



Recap
Can we use LLMs to configure MILP solvers with minimal training data?

Lawless, Li, Wikum, Udell, V, CPAIOR’25



Recap
Can we use LLMs to configure MILP solvers with minimal training data?

• New LLM-based framework to configure cutting plane separators

• Finds high-performing configuration by solving only a few MILPs

Lawless, Li, Wikum, Udell, V, CPAIOR’25



Recap
Can we use LLMs to configure MILP solvers with minimal training data?

• New LLM-based framework to configure cutting plane separators

• Finds high-performing configuration by solving only a few MILPs

• Ensembling strategy to build portfolio of high-performing configurations

Lawless, Li, Wikum, Udell, V, CPAIOR’25



Recap
Can we use LLMs to configure MILP solvers with minimal training data?

• New LLM-based framework to configure cutting plane separators

• Finds high-performing configuration by solving only a few MILPs

• Ensembling strategy to build portfolio of high-performing configurations

• Requires no custom solver interface

Lawless, Li, Wikum, Udell, V, CPAIOR’25



Recap
Can we use LLMs to configure MILP solvers with minimal training data?

• New LLM-based framework to configure cutting plane separators

• Finds high-performing configuration by solving only a few MILPs

• Ensembling strategy to build portfolio of high-performing configurations

• Requires no custom solver interface

• Competitive with existing configuration approaches

Lawless, Li, Wikum, Udell, V, CPAIOR’25



Recap
Can we use LLMs to configure MILP solvers with minimal training data?

• New LLM-based framework to configure cutting plane separators

• Finds high-performing configuration by solving only a few MILPs

• Ensembling strategy to build portfolio of high-performing configurations

• Requires no custom solver interface

• Competitive with existing configuration approaches
but only requires a fraction of the training data and computation time

Lawless, Li, Wikum, Udell, V, CPAIOR’25



Outline

1. Background 

2. LLMs for speeding up solvers 
i. Solver configuration 
ii. Evolutionary search for MILP heuristics 

a. Background 
b. Cut selection 
c. Large neighborhood search 
d. Diving heuristics 

3. Takeaways
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LLMs for automated heuristic design

• Heuristic design is central to NP-hard optimization
• But manual heuristic design is slow, relying on human ingenuity

• Automated heuristic design/scheduling goes back to the 1960s
• Fisher, Thompson, ’63; Crowston et al., ’63; survey by Burke et al., JORS’13

• Automated heuristic design with LLMs:
• LLMs generate heuristic code
• Heuristic fitness scored automatically
• Evolutionary selection keeps improved heuristics

E.g., FunSearch [Romera-Paredes, Nature’24], ReEvo [Ye et al., NeurIPS’24], AlphaEvolve [Novikov et al., ’25], …



Evolution of Heuristics [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24]

Example: Online bin packing

• Task: Pack items of varying sizes into fewest bins

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Figure by Fawzi, Romera-Paredes
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Evolution of Heuristics [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24]

Example: Online bin packing

• Task: Pack items of varying sizes into fewest bins

• Items arrive sequentially
• Must be packed into a bin immediately
• No knowledge of future arrivals

• Each bin has fixed capacity (experiments: )C = 100

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Figure by Fawzi, Romera-Paredes



Heuristic

Example: Online bin packing
Heuristic representation

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24



Heuristic

Example: Online bin packing
Heuristic representation

Code 
def heuristic(item, bins): 
    """ 
    item: scalar item size 
    bins: 1D np.array of remaining capacities 
    returns: per-bin scores (higher is better) 

…
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Example: Online bin packing
Heuristic representation

Code 
def heuristic(item, bins): 
    """ 
    item: scalar item size 
    bins: 1D np.array of remaining capacities 
    returns: per-bin scores (higher is better) 

…
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exponentially decaying factor, with different 
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Heuristic

Example: Online bin packing
Heuristic representation

Fitness: 0.0196

Code 
def heuristic(item, bins): 
    """ 
    item: scalar item size 
    bins: 1D np.array of remaining capacities 
    returns: per-bin scores (higher is better) 

…

Natural language description 

Incorporates a weighted average of the 
utilization ratio, dynamic adjustment, and an 
exponentially decaying factor, with different 
parameter settings to minimize the number of 
used bins. 

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24



Example: Online bin packing
Fitness metric

• Test instances [Romera-Paredes et al., Nature’24]:
• Five Weibull test instances, each with 5000 items
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Example: Online bin packing
Fitness metric

• Test instances [Romera-Paredes et al., Nature’24]:
• Five Weibull test instances, each with 5000 items

• lower bound on opt bin count [Martello & Toth ‘90]ℓb =
• number of bins used by heuristicn =

•  across the test instancesFitness = avg ( ℓb
n )

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24
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1. Initialization: generate  initial heuristics using Initialization Prompt 

2. Heuristic generation:  
Apply 5 Evolution Prompts in parallel (  new heuristics) 

i. Select parent heuristic(s) to form prompt 
ii. LLM generates new thought and code 
iii. Evaluate fitness on test instances 
iv. Add feasible heuristics to population 

3. Retain top  heuristics by fitness; return to Step 1

N

5N

N

Algorithm overview

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

X X X X X
X X X X X
X X
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Evolution prompts

• E1 – Diverse exploration: generate entirely new heuristic ideas from scratch

• E2 – Shared-Idea variants: generate based on high-performing “themes”

• M1 – Edit: modify an existing heuristic

• M2 – Parameter tuning: fine-tune numeric settings or thresholds in code

• M3 – simplification: prune unnecessary components or redundant logic

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24



0.9620

0.9689

0.9825

0.9927
0.9928

0.9929
0.9932

M1: penalty for large bins
(bins - item) < 0.2*bins.max()

E1, deviation from average
abs(bins - np.mean(bins))

E2, utilization of cubic root
cbrt(item) / (bins - item)

E2, combination of utilization
and penalty
cbrt(item) / (bins - item) –
(bins - item) < 0.4 * bins.max()

E1, exponent term
exp(-(bins - item)**2)

M2, hybrid adjustment
diff = bins - item
where(diff > (item * 3), (1 - diff / bins) *
sqrt(diff + 3) + 0.8, (1 - diff / bins) *
sqrt(diff + 0.5) + 0.3)

M3, new parameter
settings

E1, hybrid term
1 - (bins - item) / bins *
sqrt(bins - item + 1)
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Number of generations
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0.9670

Input: item, bins
▪ item: size of item
▪ bins: bin capacities

Output: scores
▪ scores: scores for

assigning item

Heuristic In&Out

0.9621
Initialization

Final 
Heuristic

The heuristic incorporates a weighted average of the utilization
ratio, dynamic adjustment, and an exponentially decaying factor,
with different parameter settings to minimize the number of used
bins.

def heuristic(item, bins):
diff = bins-item # remaining capacity
exp = exp(diff) # exponent term
sqrt = sqrt(diff) # square root term
ulti = 1-diff/bins # utilization term
comb = ulti * sqrt # combination of utilization and square root 
adjust = where(diff > (item * 3), comb + 0.8, comb + 0.3)

# hybrid adjustment term to penalize large bins 
hybrid_exp = bins / ((exp + 0.7) *exp)

# hybrid score based on exponent term
scores = hybrid_exp + adjust

# sum of hybrid score and adjustment
return scores

# Human (Best Fit)

def heuristic(item, bins):
scores = item - bins
return scores

# FunSearch

def heuristic(item, bins):
max_bin= max(bins)
comb1 = (bins - max_bin)**2 / item 
comb2 = bins**2 / item**2
comb3 = bins**2 / item**3
scores = comb1 + comb2 + comb3
scores[bins>item] = -score[bins>item]
scores[1:] -= score[:-1]
return scores

# EoH
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Example: Online bin packing
Experimental setup

• Baselines:
• First Fit: place item in first bin that fits
• Best Fit: place item in bin w/ least available space
• Published FunSearch heuristic as-is

• Problem sizes: 1000–10,000 items

• Capacities: C = 100 and C = 500

• Each setting: 5 randomly generated instances

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24



Bin packing results

Metric: average gap to lower bound [Martello & Toth ‘90]

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

C=100 C=500
Method 1k items 5k items 10k items 1k items 5k items 10k items
First Fit 5.32% 4.40% 4.44% 4.97% 4.27% 4.28%
Best Fit 4.87% 4.08% 4.09% 4.50% 3.91% 3.95%

FunSearch 3.78% 0.80% 0.33% 6.75% 1.47% 0.74%
EoH 2.24% 0.80% 0.61% 2.13% 0.78% 0.61%
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Beyond EoH
Recent examples

• Reflective Evolution [Ye et al., NeurIPS’24]
• Uses verbal gradients and reflective critiques to guide evolution

• Multi-objective Evolution of Heuristic [Yao et al., AAAI’25]
• Evolves Pareto-optimal heuristics for multi-objective optimization

• AlphaEvolve [Novikov et al., arXiv’25]
• Scales to file-level evolution
• Open-source version: OpenEvolve [Sharma, GitHub’25]
• Integrate with Deep Research methods: DeepEvolve [Liu et al., arXiv’25]



Outline

1. Background 

2. LLMs for speeding up solvers 
i. Solver configuration 
ii. Evolutionary search for MILP heuristics 

a. Background 
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Overview of approach

• EvoCut automates cut discovery using LLMs plus evolution
• Initializes cut population; evolves via crossover and mutation

• Empirically checks optimal-solution preservation and fractional separation

• Scores cuts by relative optimality-gap reduction

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25
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Acceleration cuts
Inequalities added to speed up MILP solving

• Valid cut: doesn’t separate any integer-feasible point

• Optimality-preserving cut: doesn’t separate the opt integer-feasible point

• EvoCut cuts aren’t proven optimality-preserving; empirically checked
LP optimal solution

Integer optimal solution
Valid cut

Optimality-preserving cut

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25
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i≠j

cijxij cij i → j

Degree constraints (enter/leave exactly once): ∑
j≠i

xij = 1, ∑
j≠i

xji = 1, ∀i

Subtour-elimination: ui − uj + nxij ≤ n − 1, ∀i ≠ j, i, j ∈ {2,…, n}
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Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over  citiesn

Edge variables:  (travel )xij ∈ {0,1}, ∀i ≠ j i → j

Order variables: (visit position)ui ∈ {1,...,n}
Fix  (start city);  means travel u1 = 1 uj = 2 1 → j

(Very simple) example of a CP found by EvoCut:
uj ≤ 2 + (n − 2)(1 − x1j), ∀j ∈ {2,…, n}
• If  (travel )x1j = 1, uj ≤ 2 1 → j
• If x1j = 0, uj ≤ n

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25
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Method overview
Data preprocessing

• Construct evaluation set  and verification set  of MILPsDe Dv

• On : run baseline solver  under fixed computational budgetDe ∀z ∈ De

• Record terminal optimality gap gapref(z)

• On : run baseline solver to optimality and store optimal solutionDv
• Also store solution to LP relaxation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25
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Method overview
How to verify and evaluate a candidate cut

• Verification on :Dv
1. Code must compile; errors trigger diagnostic prompt, retry
2. OSP: maintains feasibility of optimal solutions across Dv
3. Usefulness: separate LP-optimal solution on some  instanceDv

• Run baseline solver  instances under fixed computational budget∀z ∈ De

• Record terminal optimality gap  with cutgapcut(z)

• Fitness: average relative gap change over : De
gapref(z) − gapcut(z)

gapref(z)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25
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Method overview
Candidate cut generation

1. Initializer LLM seeds candidate cuts
• Uses model code and natural language description

2. Population evolved for  generationsT
• Elitism: carry top cuts into next generation
• Selection: pick parents with probability proportional to fitness
• Reproduce: crossover (merge two parents) or mutation

3. Verify and evaluate offspring before including in population
• Failed offspring triggers feedback; retry up to max

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25
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Experimental setup

• Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

• Benchmarks:
• TSP
• Multi-Commodity Network Design (MCND)
• Capacitated Warehouse Location Problem (CWLP)
• Job Shop Scheduling Problem (JSSP)

• ; drawn from synthetic generators|De | = 10, |Dv | = 2

• Test set : public datasets; 40 hard medium/large instances eachDt

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25



Snapshot of results

Checkpoints 5 s 10 s 50 s 150 s 300 s OSP rate (%)
TSP 16.3 ± 24.9 15.4 ± 27.3 27.7 ± 31.1 44.4 ± 27.7 57.4 ± 26.3 100

MCND 9.4 ± 21.1 6.3 ± 22.0 11.7 ± 19.1 10.4 ± 18.4 17.1 ± 20.2 100
CWLP -6.9 ± 17.0 -8.3 ± 15.1 24.0 ± 24.9 42.5 ± 21.3 46.2 ± 41.1 100
JSSP 22.8 ± 18.3 28.8 ± 19.7 39.1 ± 22.8 34.5 ± 22.1 37.3 ± 22.0 100

Relative mean gap improvement over Dt
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Snapshot of results

• Evolution helps: initializer-only cuts have lower success

• Mutation/crossover succeed 63–82% attempts; initializer 25.4%

Checkpoints 5 s 10 s 50 s 150 s 300 s OSP rate (%)
TSP 16.3 ± 24.9 15.4 ± 27.3 27.7 ± 31.1 44.4 ± 27.7 57.4 ± 26.3 100

MCND 9.4 ± 21.1 6.3 ± 22.0 11.7 ± 19.1 10.4 ± 18.4 17.1 ± 20.2 100
CWLP -6.9 ± 17.0 -8.3 ± 15.1 24.0 ± 24.9 42.5 ± 21.3 46.2 ± 41.1 100
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Takeaways

• EvoCut: Evolutionary search automates cut discovery

• Optimal-solution preservation and fractional separation verified empirically

• Cuts improve optimality-gap reduction throughout solve trajectory

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25
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LLMs for large neighborhood search (LNS)

• Solving large-scale MILPs need strong primal heuristics

• LNS is effective; neighborhood choice dominates performance
• Without ML: Fischetti, Lodi, MP’03; Danna et al., MP’05; …
• With ML: Song et al., NeurIPS’20; Wu et al., NeurIPS’21; Huang et al., ICML’23; …

• Prior neighborhood selection methods need expertise or heavy training

• Propose LLM-LNS: LLM-guided neighborhood scoring for MILPs

Ye, Xu, Yan, Cheng, ICML’25
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• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset
• Repair: solve resulting MILP subproblem

• Neighborhood choice controls search power and runtime tradeoff
• Small neighborhoods: fast but limited improvement
• Large neighborhoods: powerful but expensive

Ye, Xu, Yan, Cheng, ICML’25



Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization 

• Iteration alternates between destroy and repair phases 
• Destroy: fix most variables; free a selected subset 
• Repair: solve resulting MILP subproblem

For each integer variable :xi

Ye, Xu, Yan, Cheng, ICML’25



Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization 

• Iteration alternates between destroy and repair phases 
• Destroy: fix most variables; free a selected subset 
• Repair: solve resulting MILP subproblem

For each integer variable :xi

• Fix all other integer variables to current values

Ye, Xu, Yan, Cheng, ICML’25



Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization 

• Iteration alternates between destroy and repair phases 
• Destroy: fix most variables; free a selected subset 
• Repair: solve resulting MILP subproblem

For each integer variable :xi

• Fix all other integer variables to current values
• Relax ; solve resulting LPxi

Ye, Xu, Yan, Cheng, ICML’25



Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization 

• Iteration alternates between destroy and repair phases 
• Destroy: fix most variables; free a selected subset 
• Repair: solve resulting MILP subproblem

For each integer variable :xi

• Fix all other integer variables to current values
• Relax ; solve resulting LPxi

• Measure deviation from integer solution value

Ye, Xu, Yan, Cheng, ICML’25



Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization 

• Iteration alternates between destroy and repair phases 
• Destroy: fix most variables; free a selected subset 
• Repair: solve resulting MILP subproblem

For each integer variable :xi

• Fix all other integer variables to current values
• Relax ; solve resulting LPxi

• Measure deviation from integer solution value
• Free/destroy variables with largest deviation

Ye, Xu, Yan, Cheng, ICML’25
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• Inner agent: prompted to score variables to define neighborhoods 
• Select top-k scores; free (i.e., destroy) those variables in subproblem 

• Outer agent evolves prompts to improve inner strategies 
• Example prompt:

• Goal: solve minimization problem by using LLM-generated LNS heuristics
• We already designed several initial prompts and collected the LLM’s resulting heuristics
• Analyze each prompt and the objective function values achieved by LNS heuristic
• Create new prompt w/ different structure, motivated by insights from prompt–value pairs

Ye, Xu, Yan, Cheng, ICML’25
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• Benchmarks:
• Set cover (SC)
• Min vertex cover (MVC)
• Max independent set (MIS)
• See paper for mixed integer knapsack set (MIKS)

• Tested on instances with (on the order of)  variables/constraints106

• Train on small-scale instances for scalable heuristic evolution
• Training instances are roughly 100x smaller than the test instances

Ye, Xu, Yan, Cheng, ICML’25
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Experimental setup
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• Random-LNS: random variable neighborhoods in LNS

• ACP: adaptive constraint propagation guides neighborhood choice
Ye et al., AAAI’23

• CL-LNS: contrastive learning selects LNS neighborhoods
Huang et al., ICML’23

• GNN&GBDT: ML pipeline combining graphs and boosted trees
Ye et al., ICML’23

• Light-MILPopt: lightweight ML framework for MILP optimization
Ye et al., ICLR’23
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Experiments
Snapshot of results

• LLM-LNS is mostly Pareto optimal (see paper for many more experiments)

(Max) set cover Min vertex cover Max independent set
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Takeaways

• Prior neighborhood selection methods need expertise or heavy training

• LLM-LNS: LLM-guided neighborhood scoring for MILPs

• Inner-outer agent evolves neighborhood selection heuristics and prompts

Ye, Xu, Yan, Cheng, ICML’25



Outline

1. Background 

2. LLMs for speeding up solvers 
i. Solver configuration 
ii. Evolutionary search for MILP heuristics 

a. Background 
b. Cut selection 
c. Large neighborhood search 
d. Diving heuristics 

3. Takeaways Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv’25
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Evolutionary search for diving heuristics

• Diving: quickly explores a single path (a "dive") in the search tree
• Iteratively fixing fractional variables to integer values, solving LP relaxation
• Goal is to find a feasible integer solution

• Policy choices: variable order and rounding direction

• DHEvo aims to evolve hard instances with improving heuristics
• Multi-agent LLM generates MILP–heuristic pairs jointly

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv’25
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Takeaways

• Solver defaults are rarely optimal: instance families vary widely in structure

• Many ways to integrate ML into solvers

• LLMs can be leveraged in many ways to speed up solvers
• Solver configuration: LLMs as excellent information retrieval systems
• Evolutionary search for MILP heuristics: LLMs to explore semantic search space

• Cut selection
• Large neighborhood search
• Diving heuristics X X X X X
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Thank you! Questions?
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