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® Modern MILP solvers expose hundreds of parameters
® Defaults are rarely optimal: instance families vary widely in structure
® Small changes can yield large runtime differences

® Many ways to integrate ML into solvers
® Potential for ML to provide significant speedups over defaults
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Background: Branch-and-cut algorithm

Uses guidance from LP relaxations to guide search

® Explore search tree of restricted MILP subproblems
® Fach node adds bounds on integer variables

® Solve LP relaxation to upper bound subproblem’s integer-tfeasible solution
® |f integer-feasible: incumbent solution

( )

Variable

® Branch by choosing a variable and splitting its domain «— . .
selection pollcy)

\_

® Prune nodes whose bound can’t beat incumbent

® Terminate when all nodes pruned or proven optimal
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KMILP B KLinear programming (LP) relaxation A
maximize c¢'x maximize c¢'x
subjectto Ax < b subjectto Ax < b

K XZEZfOraHZEU K #E%Fe-ﬁa-l-l-t—&kl j

Cutting planes (CPs) are additional constraints that: [LP optima solution]
® Separate LP optimal solution |

® Don't separate any integer point
Many different families ot CPs; which to use when? LNy
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ML for MILP solvers

® Define a parameterized solver A(0). E.qg.:

® () are parameters exposed by Gurobi

® () are parameters of a neural network embedded in solver

® Specity distribution D over MILPs z (models application domain)

® Choose a performance metric c(z, 0); e.g., runtime

e Ultimate goal: minimize E, [C(Z, «9)] (proxy of future cost on unseen MILPs)

® Can learn offline 8 or instance-aware 6(z) configuration
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~

® Early work: treat solver (largely) as a black-box; learn from evaluations

® Small subset of examples:

® ParamlLS: iterated local search over parameter settings
® SMAC: model-based search with surrogate predictions

e Portfolio-based algorithm selection
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Blackbox algorithm configuration

Example: Portfolio-based algorithm configuration

® One configuration rarely dominates across diverse MILP instances
® Portfolios combine multiple strong configurations

® Hydra iteratively grows portfolio via targeted reconfiguration

® Tune new member against instances current portfolio solves poorly

® |nstance features enable per-instance selection (static & quick probing runs)

® Choose configuration before solving each instance

Xu, Hoos, Leyton-Brown, AAAI'10



Configuration of solver components

Next gen: don't treat solver as blackbox; adapt to solver components. E.g.:

Cut selection

Variable selection
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Graph neural networks for variable selection

e Key idea: encode B&B state as variable-constraint bipartite graph
® Use bipartite graph neural network as a variable selection policy

® Training: behavioral cloning of strong branching (expensive gold standard)

® |ntegrated in SCIP; four NP-hard benchmarks

® Results:
® Best imitation accuracy among ML baselines
® Generally taster than SCIP detault; good size generalization

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurlPS'19
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e MIPLIB 2017: widely used “real-world” MILP benchmark library

® Benchmark set: 240 instances, solvable, numerically stable

® Collection set: 1065 diverse instances, less filterec

® Distributional MIPLIB: library of MILP distributions [Huang et al., arXiv'24]

® More than 35 distributions across 13 domains
® |ncludes synthetic and real-world domains, multiple hardness levels
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Benchmarks

e MIPLIB 2017: widely used “real-world” MILP benchmark library

® Benchmark set: 240 instances, solvable, numerically stable

® Collection set: 1065 diverse instances, less filterec

® Distributional MIPLIB: library of MILP distributions

® More than 35 distributions across 13 domains
® |ncludes synthetic and real-world domains, multiple hardness levels

® MILP-Evolve

® "Evolving” pipeline for generating new MILP tamilies

® Designed to be highly diverse to mimic real-world optimization scenarios
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ii. Evolutionary search tor MILP heuristics

3. Takeaways
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Key challenge

Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs
2. Find configuration(s) with good average runtime over training set
3. Hope for a good runtime from the same application (or distribution)

Key challenge: Evaluating one configuration’s average runtime
requires solving every MILP in the training set using that configuration

Key question: Can we generate problem-specitic cutting plane configurations
with little to no historical data and compute?

Lawless, Li, Wikum, Udell, V, CPAIOR'25
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Our contributions

® First LLM-based framework to configure MILP solvers

® Consistent improvement over solver default (SCIP and Gurobi)

® Pareto-optimal compared to baseline methods

Avg improvement

over SCIP (%)
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Why LLMs

® || Ms are powerful, but they can’t do everything
® They are good at information retrieval

® There's a rich literature on cutting planes

Go g|€ Scholar cutting planes B

Articles About 2,470,000 results (0.10 sec)

Lawless, Li, Wikum, Udell, V, CPAIOR'25
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Challenges to using LLMs

® | | M output can be highly unstable

® Cutting plane separators are solver-specific

® Details of solver separators are not always available

> CoverCuts

Cover cut generation

e Type: int
e Default value: -1
e Minimum value: -1

e Maximum value: 2

Controls cover cut generation. Use 0 to disable these cuts, 1 for moderate cut generation, or 2 for
aggressive cut generation. The default -1 value chooses automatically. Overrides the Cuts parameter.

Lawless, Li, Wikum, Udell, V, CPAIOR'25
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LLM for cold-start configuration pipeline
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Experimental set-up

Baselines and our method

® Pruning: turns off all CPs not used while solving validation set
® Use the default setting for other CPs

e Search(d): sample d candidate configurations uniformly at random

® Use the one with best median performance on validation set

® Zero-shot: use medoid of the largest cluster

e Cold-start(k):
1. Run k medoids clustering

2. Select the best performing medoid on the validation set

Lawless, Li, Wikum, Udell, V, CPAIOR'25



Experimental set-up

Datasets, model

Dataset

# vars # constrs

Binary packing
Capacitated facility location
Combinatorial auction
Maximum independent set
Max cut
Packing
Set cover

Load balancing

Middle-mile consolidation
network design (MM)

300
100
100
500
54
60
500

300
100
500
1088
134
60
250

64340 61000

569

2438
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Dataset
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Binary packing
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Classic MILP tamilies  Maximum independent set
Max cut
Packing
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Middle-mile consolidation
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300
100
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500

300
100
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60
250
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569
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Experimental set-up

Datasets, model

Dataset # vars # constrs Model: GPT-40
Binary packing 300 300
Capacitated facility location| 100 100 Training set size: 100
Combinatorial auction 100 500 Val set size: 30
Classic MILP tamilies ~ Maximum independent set| 500 1088
Max cut >4 134 Evaluation metric:
Packing 60 60

% improvement over

Set cover 500 250 default solve time

Load balancing 64340 61000
Complex real-world

MILP families Middle-mile consolidation

9 24
network design (MM) >0 :

Lawless, Li, Wikum, Udell, V, CPAIOR'25



Empirical results
Cold-start(5) yields 6-71% faster runtimes than SCIP’s default

Problem Pruning Search(5) Search(500) Zero-shot Cold-start(5)

Bin. pack. | 1.33 9.23 39.3 16.76 38.35
Cap.fac. | -0.64 9.57 2.72 /.61 26.12
Comb. auc.| 1.96 58.1 64.01 21.06 63.59
Ind. set 2.07 26.95 67.01 21.6 71.95
Max.cut | -2.18 17.72 69.63 71.43 71.01
Pack. 15.87 -13.81 24.49 15.09 25.51
Set cov. 6.62 -10.04 61.08 61.72 61.74
Load bal. 0.08 -150.01 -50.02 0.0 6.37
MM -0.12 -8.83 50.03 -6.52 53.3

Lawless, Li, Wikum, Udell, V, CPAIOR'25



Empirical results
Cold-start(5) yields 6-71% faster runtimes than SCIP’s default

Problem Pruning Search(5) Search(500) Zero-shot Cold-start(5)

Bin. pack. | 1.33 9.23 39.3 16.76 38.35
Cap.fac. | -0.64 9.57 2.72 /.61 26.12
Comb. auc.| 1.96 58.1 64.01 21.06 63.59
Ind. set 2.07 26.95 67.01 21.6 71.95
Max.cut | -2.18 17.72 69.63 71.43 71.01
Pack. 15.87 -13.81 24.49 15.09 25.51
Set cov. 6.62 -10.04 61.08 61.72 61.74
Load bal. 0.08 -150.01 -50.02 0.0 6.37
MM -0.12 -8.83 50.03 -6.52 53.3

By testing only 5 configs,
we match/beat Search(500)
on all instances

Lawless, Li, Wikum, Udell, V, CPAIOR'25



Empirical results
Cold-start(5) yields 6-71% faster runtimes than SCIP’s default

Problem Pruning Search(5) Search(500) Zero-shot Cold-start(5)

Bin. pack. | 1.33 9.23 39.3 16.76 38.35
Cap.fac. | -0.64 9.57 2.72 /.61 26.12
Comb. auc.| 1.96 58.1 64.01 21.06 63.59
Ind. set 2.07 26.95 67.01 21.6 71.95
Max.cut | -2.18 17.72 69.63 71.43 71.01
Pack. 15.87 -13.81 24.49 15.09 25.51
Set cov. 6.62 -10.04 61.08 61.72 61.74
Load bal. 0.08 -150.01 -50.02 0.0 6.37
MM -0.12 -8.83 50.03 -6.52 53.3

By testing only 5 configs,
we match/beat Search(500)
on all instances

Without solving any MILPs,
we match/beat Search(500)
on

Lawless, Li, Wikum, Udell, V, CPAIOR'25



On out-of-distribution instances

25 families of problem from MILP-Evolve dataset

® New dataset, “evolving” pipeline for generating new MILP families

® Designed to be highly diverse to mimic real-world optimization scenarios

Search(5)

Search(500)

N

/ero-shot

Cold-start(5) A
-150 -100 -50 0 50 100

Relative improvement over SCIP (%)

Lawless, Li, Wikum, Udell, V, CPAIOR'25
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Ablations

Our design choices are robust

Setting Ind. set Max cut Bin. pack. MM

Ours 71.95  71.01 38.35  53.3

Disable cutting planes | -14.96  71.25 30.43  -150
No CP text descr. 7227 71.49 16.85  9.29

Ensembling strategies
Average configuration | 20.65 71.24 17.52 -11.08
Mode configuration 21.08 71.44 18.11

Smallest configuration | 20.83  70.91 17.42  -4.74

Disabling CPs can reduce performance

Our CP descriptions boost performance

-12.63 k-medoids outperforms simpler heuristics

Lawless, Li, Wikum, Udell, V, CPAIOR'25
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Recap

Can we use LLMs to configure MILP solvers with minimal training data?

® New LLM-based framework to configure cutting plane separators

® Finds high-pertforming configuration by solving only a few MILPs

® Ensembling strategy to build portfolio of high-performing contigurations
® Requires no custom solver interface

o Competitive with existing configuration approaches
but only requires a fraction of the training data and computation time

Lawless, Li, Wikum, Udell, V, CPAIOR'25



Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search for MILP heuristics
a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways



LLMs for automated heuristic design



LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization



LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity



LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

® Automated heuristic design/scheduling goes back to the 1960s



LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

® Automated heuristic design/scheduling goes back to the 1960s

® Automated heuristic design with LLMs:



LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

® Automated heuristic design/scheduling goes back to the 1960s

® Automated heuristic design with LLMs:
® | | Ms generate heuristic code



LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

® Automated heuristic design/scheduling goes back to the 1960s

® Automated heuristic design with LLMs:
® | | Ms generate heuristic code
® Heuristic fitness scored automatically



LLMs for automated heuristic design

® Heuristic design is central to NP-hard optimization
® But manual heuristic design is slow, relying on human ingenuity

® Automated heuristic design/scheduling goes back to the 1960s

® Automated heuristic design with LLMs:
® | | Ms generate heuristic code
® Heuristic fitness scored automatically
® Evolutionary selection keeps improved heuristics



EVO'UtiOn Of Heu riStiCS [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24]

Example: Online bin packing

® Task: Pack items of varying sizes into fewest bins

Figure by Fawzi, Romera-Paredes
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EVO'UtiOn Of Heu riStiCS [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24]

Example: Online bin packing

® Task: Pack items of varying sizes into fewest bins

® |tems arrive sequentially

Figure by Fawzi, Romera-Paredes

l=l=l=lnl=

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24




EVO'UtiOn Of Heu riStiCS [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24]

Example: Online bin packing

® Task: Pack items of varying sizes into fewest bins

® |tems arrive sequentially
® Must be packed into a bin immediately

Figure by Fawzi, Romera-Paredes

l=l=l=Inl=

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24




EVO'UtiOn Of Heu riStiCS [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24]

Example: Online bin packing

® Task: Pack items of varying sizes into fewest bins

® |tems arrive sequentially
® Must be packed into a bin immediately
® No knowledge of future arrivals

Figure by Fawzi, Romera-Paredes

l=l=l=Inl=

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24




EVO'UtiOn Of Heu riStiCS [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24]

Example: Online bin packing

® Task: Pack items of varying sizes into fewest bins

® |tems arrive sequentially
® Must be packed into a bin immediately
® No knowledge of future arrivals

® Each bin has fixed capacity (experiments: C = 100)

Figure by Fawzi, Romera-Paredes

l=l=l=nl=

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24
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Example: Online bin packing

Heuristic representation

s Heuristic

" Code

def heuristic(item, bins):

miiw

item: scalar 1tem size
bins: 1D np.array of remainling capacities

returns: per-bin scores (higher 1s better)

J
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Example: Online bin packing

Heuristic representation
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Code Natural language description
def heuristic(item, bins): Incorporates a weighted average of the
e utilization ratio, dynamic adjustment, and an
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Example: Online bin packing

Heuristic representation

4 o _ oo )
Heuristic
( \ ( [ ) o \
Code Natural language description
def heuristic(item, bins): Incorporates a weighted average of the
e utilization ratio, dynamic adjustment, and an
item: scalar item size exponentially decaying factor, with different
bins: 1D np.array of remaining capacities parameter settings to minimize the number of
returns: per-bin scores (higher is better) used bins.
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Example: Online bin packing

Fithess metric

® Test instances |[Romera-Paredes et al., Nature'24|s
® Five Weibull test instances, each with 5000 items
® /b = lower bound on opt bin count [Martello & Toth '90]
® n = number of bins used by heuristic
A,

) across the test instances
n

e Fitness = avg (

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24
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Algorithm

1. Initialization:

overview

generate N initial heuristics using Initialization Prompt

2. Heuristic generation:

Apply 5 Evolution Prompts in parallel (SN new heuristics)
i. Select parent heuristic(s) to form prompt

ii. LLM generates new thought and code

iii. Evaluate fi

thess on test instances

iv. Add feasi

3. Retain top N heuristics by fitness; return to Step 1

ole heuristics to population

X
X

X X
X X
X X

X X
X X
_ N
N

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24
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Evolution prompts

e E1 - Diverse exploration: generate entirely new heuristic ideas from scratch

e E2 - Shared-ldea variants: generate based on high-performing “themes”

M1 - Edit: modify an existing heuristic

M2 - Parameter tuning: fine-tune numeric settings or thresholds in code

e M3 - simplification: prune unnecessary components or redundant logic

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24



>

Performance (objective)

M2, hybrid adjustment

diff = bins - item
Heuristic In&Qut | where(diff > (item * 3), (1 - diff / bins) * Is\gf{inléiw parameter
Input: item, bins E1, hybrid term — =~ E1, exponent term sqrt(diff + 3) + 0.8, (1 - diff / bins) * - ‘
e item: size of item I - (bins - item) / bins exp(-(bins - item)**2) sqrt(diff + 0.5) + 0.3) ~ .
= bins: bin capacities sqrt(bins - item + 1) ® 09929 0.9932 [ F1n.a1. ]
Output: scores ~ = : Heuristic
= scores: scores for 0.9928
assigning item 0.9927
E2, combination of utilization
and penalty r—————————————————— o R G N
cbrt(item) / (bins - item) — : # Human (Best Fit) | : 4 EoH :
(bins - item) < 0.4 * bins.max() @ o | S . | |
0.9825 | defheuristic(item, bins): | | The heuristic incorporates a weighted average of the utilization |
' I scores = item - bins : | ratio, dynamic adjustment, and an exponentially decaying factor, |
I return scores | | with different parameter settings to minimize the number of used |
E1, deviation from average e 5 | bins. I
abs(bins - np.mean(bins)) : :
s i def heuristic(item, bins): |
| | I s
|  # FunSearch | : diff = bins-item # remaining capacity :
E2, utilization of cubic root ® @ I I | oXp = exp(diff) # exponent term |
Cbr,t(item) / (bins - 1tem) 0.9689 | def heuristic(item, bins): | : sqrt = sqrt(diff) # square root term |
' I max_bin= max(bins) I ulti = 1-diff/bins # utilization term |
: combl = (bins - max_bin)**2 / item : : comb = ult1 * sqrt # combination of utilization and square root :
M1: venalty for laree bins | comb? = bins**? / item**? | | adjust= where(diff > (item * 3), comb + 0.8, comb + 0.3) |
-+ penaity 5 ® I kKD ek || # hybrid adjustment term to penalize large bins |
(bins - item) < 0.2*bins.max() 0.9670 | comb3 = bins**2 / item™**3 || , , . I
' I scores = comb1 + comb2 + comb3 | hybr1d_e%<p = bins /((exp +0.7) *exp) |
| bins>iterm] bins>itern] | # hybrid score based on exponent term |
| scores Ins_l em | -score[ bins>item : : s = bl @ adfin :
I scores|1:] = score[:-1] | # sum of hybrid score and adjustment |
e e L ® | |
{ Initialization ] 09621 I return scores || return scores |
' | || |
- () 9620 \ y e J
>
1 S 10 15 20

Number of generations
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Example: Online bin packing

Experimental setup

e Baselines:
® First Fit: place item in first bin that fits
® Best Fit: place item in bin w/ least available space
® Published FunSearch heuristic as-is

® Problem sizes: 1000-10,000 items
e Capacities: C = 100 and C =500

e Each setting: 5 randomly generated instances

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24



Bin packing results

C=100 C=500
Method 1k items S5k items 10k items 1k items S5k items 10k items
First Fit 5.32% 4.40% 4.44% 4.97% 4.27% 4.28%
Best Fit 4.87% 4.08% 4.09% 4.50% 3.91% 3.95%
FunSearch 3.78% 0.80% 0.33% 6.75% 1.47% 0.74%
EoH 2.24% 0.80% 0.61% 2.13% 0.78% 0.61%

Metric: average gap to lower bound [Martello & Toth ‘90|

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML'24
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Beyond EoH

Recent examples

® Reflective Evolution [Ye et al., NeurlPS'24]
® Uses verbal gradients and retlective critiques to guide evolution

® Multi-objective Evolution of Heuristic [Yao et al., AAAI'25]
® Evolves Pareto-optimal heuristics for multi-objective optimization

® AlphaEvolve [Novikov et al., arXiv'25]
® Scales to file-level evolution
® Open-source version: OpenEvolve [Sharma, GitHub'25]
® |ntegrate with Deep Research methods: DeepEvolve [Liu et al., arXiv'25]



Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search tor MILP heuristics
a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25



Overview of approach

® EvoCut automates cut discovery using LLMs plus evolution
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Overview of approach

® EvoCut automates cut discovery using LLMs plus evolution
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Overview of approach

® EvoCut automates cut discovery using LLMs plus evolution
® |nitializes cut population; evolves via crossover and mutation

® Empirically checks optimal-solution preservation and fractional separation

® Scores cuts by relative optimality-gap reduction

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25
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Acceleration cuts
Inequalities added to speed up MILP solving

e Valid cut: doesn't separate any integer-feasible point
o Optimality-preserving cut: doesn't separate the opt integer-feasible point

® EvoCut cuts aren’t proven optimality-preserving; empirically checked

44[ LP optimal solution j

Integer optimal solution

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25
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Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

Edge variables: x;; € {0,1},Vi # j(traveli =
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Example: Traveling salesman problem

Goal: find a minimum-cost Hamiltonian tour over 7« cities

Edge variables: x; € {0,1},Vi # j (travel i - j

Order variables: u; € {1,...,n}(visit position

Fixup = 1 (start city); u; = 2 means travel I —

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25
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Objective: min Z ¢;iX;; (¢;; is the cost to travel 1 — )
iF]

Degree constraints (enter/leave exactly once): Z X = 1, Z Xij = 1, Vi

Veal! Veal!
Subtour-elimination: i — i+ nx; < n— I, Vi#j, i1,j€{2,...,n}
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Example: Traveling salesman problem
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(Very simple) example of a CP found by EvoCut:
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(Very simple) example of a CP found by EvoCut:
u; <2+ m—-2)(1 —x),Vj € {2,...,n}
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(Very simple) example of a CP found by EvoCut:
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° Ifxlj = 1, u; < 2 (travel 1 — )
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Method overview

Data preprocessing

® Construct evaluation set D, and verification set D, of MILPs

® On D,: run baseline solver Vz € D, under fixed computational budget

® Record terminal optimality gap gap (2

® On D,: run baseline solver to optimality and store optimal solution
® Also store solution to LP relaxation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25
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Method overview

How to verify and evaluate a candidate cut

® \erification on D,
1. Code must compile; errors trigger diagnostic prompt, retry

2. OSP: maintains feasibility of optimal solutions across D,

3. Usefulness: separate LP-optimal solution on some D, instance

® Run baseline solver Vz € D, instances under tixed computational budget

® Record terminal optimality gap gap. +(z) with cut

ga pref(z) o ga pCUt(Z)

o Fitness: average relative gap change over D,
9apP efl2)
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Method overview
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Method overview

Candidate cut generation

o X
i R
B8 3 X

X X

1. Initializer LLM seeds candidate cuts
® Uses model code and natural language description

2. Population evolved for T generations
e Elitism: carry top cuts into next generation
® Selection: pick parents with probability proportional to fitness
® Reproduce: crossover (merge two parents) or mutation

3. Verify and evaluate offspring before including in population
® Failed offspring triggers teedback; retry up to max

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25
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Experimental setup

® Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

¢ Benchmarks:
o TSP
® Multi-Commodity Network Design (MCND)
® Capacitated Warehouse Location Problem (CWLP)
® Job Shop Scheduling Problem (JSSP)

e |D,|=10,|D,| =2; drawn from synthetic generators

e Test set D,: public datasets; 40 hard medium/large instances each

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25



Snapshot of results

Checkpoints 5s 10s 50s 150 s 300s OSP rate (%)
TSP 16.3 £24.9 15.4 = 27.3 27.7 £ 31. 44.4 + 27.7 57.4 +26.3 100
MCND 9.4 +21.1 6.3+22.0 11.7 £19.7 10.4+18.4 17.1 = 20.2 100
CWLP 6.9 +17.0 -8.3+15.1 24.0 £ 24.9 42.5 +21.3 46.2 + 41.1 100
JSSP 22.8 £ 18.3 28.8 £19.7 39.1£22.8 34.5 + 221 37.3+220 100

Relative mean gap improvement over D,
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Checkpoints 5s 10s 50s 150 s 300s OSP rate (%)
TSP 16.3 £24.9 15.4 = 27.3 27.7 £ 31. 44.4 + 27.7 57.4 +26.3 100
MCND 9.4 +21.1 6.3+22.0 11.7 £19.7 10.4+18.4 17.1 = 20.2 100
CWLP 6.9 +17.0 -8.3+15.1 24.0 £ 24.9 42.5 +21.3 46.2 + 41.1 100
JSSP 22.8 £ 18.3 28.8 £19.7 39.1£22.8 34.5 + 221 37.3+220 100

Relative mean gap improvement over D,

® Evolution helps: initializer-only cuts have lower success

[Check (i) code rejections, (ii) OSP rejections, (iii) usefulness rejections, and (iv) fitnessj

® Mutation/crossover succeed 63-82% attempits; initializer 25.4%
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Takeaways

® EvoCut: Evolutionary search automates cut discovery
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Takeaways

® EvoCut: Evolutionary search automates cut discovery
® Optimal-solution preservation and fractional separation verified empirically

® Cuts improve optimality-gap reduction throughout solve trajectory

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv'25



Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search tor MILP heuristics
a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways

Ye, Xu, Yan, Cheng, ICML'25



LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

Ye, Xu, Yan, Cheng, ICML'25



LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

® | NS is effective; neighborhood choice dominates performance

Ye, Xu, Yan, Cheng, ICML'25



LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

® | NS is effective; neighborhood choice dominates performance
o \Without ML: Fischetti, Lodi, MP'03: Danna et al., MP'05: ...

Ye, Xu, Yan, Cheng, ICML'25



LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

® | NS is effective; neighborhood choice dominates performance

o \Without ML: Fischetti, Lodi, MP'03: Danna et al., MP'05: ...
e \With ML: Song et al., NeurlPS'20; Wu et al., NeurlPS'21; Huang et al., ICML23; ...

Ye, Xu, Yan, Cheng, ICML'25



LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

® | NS is effective; neighborhood choice dominates performance

o \Without ML: Fischetti, Lodi, MP'03: Danna et al., MP'05: ...
e \With ML: Song et al., NeurlPS'20; Wu et al., NeurlPS'21; Huang et al., ICML23; ...

® Prior neighborhood selection methods need expertise or heavy training

Ye, Xu, Yan, Cheng, ICML'25



LLMs for large neighborhood search (LNS)

® Solving large-scale MILPs need strong primal heuristics

® | NS is effective; neighborhood choice dominates performance

o \Without ML: Fischetti, Lodi, MP'03: Danna et al., MP'05: ...
e \With ML: Song et al., NeurlPS'20; Wu et al., NeurlPS'21; Huang et al., ICML23; ...

® Prior neighborhood selection methods need expertise or heavy training

® Propose LLM-LNS: LLM-guided neighborhood scoring for MILPs

Ye, Xu, Yan, Cheng, ICML'25
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® |teration alternates between destroy and repair phases
® Destroy: fix most variables; free a selected subset
® Repair: solve resulting MILP subproblem

® Neighborhood choice controls search power and runtime tradeoft
¢ Small neighborhoods: fast but limited improvement
¢ Large neighborhoods: powerful but expensive
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Experimental setup

Benchmarks

® Benchmarks:
® Set cover (SC)
® Min vertex cover (MVC)
® Max independent set (MIS)

e Tested on instances with (on the order of) 10° variables/constraints

® Train on small-scale instances for scalable heuristic evolution
® Training instances are roughly 100x smaller than the test instances

Ye, Xu, Yan, Cheng, ICML'25
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Experimental setup

Baselines

® Random-LNS: random variable neighborhoods in LNS

e ACP: adaptive constraint propagation guides neighborhood choice
Ye et al., AAAI'23

® CL-LNS: contrastive learning selects LNS neighborhoods
Huang et al., ICML'23

¢ GNN&GBDT: ML pipeline combining graphs and boosted trees

Ye et al., ICML'23

o Light-MILPopt: lightweight ML tframework tor MILP optimization
Ye et al., ICLR'23

Ye, Xu, Yan, Cheng, ICML'25



Experiments

Snapshot of results
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® || M-LNS is mostly Pareto optimal (see paper for many more experiments)
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Takeaways

® Prior neighborhood selection methods need expertise or heavy training

® LLM-LNS: LLM-guided neighborhood scoring tor MILPs

® |nner-outer agent evolves neighborhood selection heuristics and prompts

Ye, Xu, Yan, Cheng, ICML'25
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1. Background
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i. Solver configuration
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d. Diving heuristics

3. Takeaways
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Evolutionary search for diving heuristics

® Diving: quickly explores a single path (a "dive") in the search tree
® [teratively fixing fractional variables to integer values, solving LP relaxation
® Goalisto find a feasible integer solution

® Policy choices: variable order and rounding direction

® DHEvo aims to evolve hard instances with improving heuristics
® Multi-agent LLM generates MILP-heuristic pairs jointly

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv'25
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Takeaways

® Solver defaults are rarely optimal: instance families vary widely in structure
® Many ways to integrate ML into solvers

® || Ms can be leveraged in many ways to speed up solvers
® Solver configuration: LLMs as excellent information retrieval systems

e Evolutionary search for MILP heuristics: LLMs to explore semantic search space

® (Cutselection

® |arge neighborhood search

® Diving heuristics




Thank you! Questions?




