
Ellen Vitercik

Model solving

ML to speed up MILP solvers

• Modern MILP solvers expose hundreds of parameters

ML to speed up MILP solvers

• Modern MILP solvers expose hundreds of parameters

• Defaults are rarely optimal: instance families vary widely in structure

ML to speed up MILP solvers

• Modern MILP solvers expose hundreds of parameters

• Defaults are rarely optimal: instance families vary widely in structure

• Small changes can yield large runtime differences

ML to speed up MILP solvers

• Modern MILP solvers expose hundreds of parameters

• Defaults are rarely optimal: instance families vary widely in structure

• Small changes can yield large runtime differences

• Many ways to integrate ML into solvers

ML to speed up MILP solvers

• Modern MILP solvers expose hundreds of parameters

• Defaults are rarely optimal: instance families vary widely in structure

• Small changes can yield large runtime differences

• Many ways to integrate ML into solvers
• Potential for ML to provide significant speedups over defaults

Outline

1. Background
i. Branch-and-cut (B&C) algorithm
ii. Brief overview of ML for B&C: non-GenAI

2. LLMs for speeding up solvers

3. Takeaways

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

• Explore search tree of restricted MILP subproblems

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

• Explore search tree of restricted MILP subproblems
• Each node adds bounds on integer variables

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

• Explore search tree of restricted MILP subproblems
• Each node adds bounds on integer variables

• Solve LP relaxation to upper bound subproblem’s integer-feasible solution

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

• Explore search tree of restricted MILP subproblems
• Each node adds bounds on integer variables

• Solve LP relaxation to upper bound subproblem’s integer-feasible solution
• If integer-feasible: incumbent solution

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

• Explore search tree of restricted MILP subproblems
• Each node adds bounds on integer variables

• Solve LP relaxation to upper bound subproblem’s integer-feasible solution
• If integer-feasible: incumbent solution

• Branch by choosing a variable and splitting its domain

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

• Explore search tree of restricted MILP subproblems
• Each node adds bounds on integer variables

• Solve LP relaxation to upper bound subproblem’s integer-feasible solution
• If integer-feasible: incumbent solution

• Branch by choosing a variable and splitting its domain Variable
selection policy

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

• Explore search tree of restricted MILP subproblems
• Each node adds bounds on integer variables

• Solve LP relaxation to upper bound subproblem’s integer-feasible solution
• If integer-feasible: incumbent solution

• Branch by choosing a variable and splitting its domain

• Prune nodes whose bound can’t beat incumbent

Variable
selection policy

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

• Explore search tree of restricted MILP subproblems
• Each node adds bounds on integer variables

• Solve LP relaxation to upper bound subproblem’s integer-feasible solution
• If integer-feasible: incumbent solution

• Branch by choosing a variable and splitting its domain

• Prune nodes whose bound can’t beat incumbent

• Terminate when all nodes pruned or proven optimal

Variable
selection policy

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

MILP
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

MILP
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Linear programming (LP) relaxation
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

MILP
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Linear programming (LP) relaxation
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

LP optimal solution

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

MILP
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Linear programming (LP) relaxation
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Cutting planes (CPs) are additional constraints that: LP optimal solution

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

MILP
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Linear programming (LP) relaxation
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Cutting planes (CPs) are additional constraints that:
• Separate LP optimal solution

LP optimal solution

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

MILP
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Linear programming (LP) relaxation
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Cutting planes (CPs) are additional constraints that:
• Separate LP optimal solution
• Don’t separate any integer point

LP optimal solution

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

MILP
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Linear programming (LP) relaxation
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Cutting planes (CPs) are additional constraints that:
• Separate LP optimal solution
• Don’t separate any integer point

LP optimal solution

Background: Branch-and-cut algorithm
Uses guidance from LP relaxations to guide search

MILP
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Linear programming (LP) relaxation
maximize
subject to
 for all

cT x
Ax ≤ b
xi ∈ ℤ i ∈ I

Cutting planes (CPs) are additional constraints that:
• Separate LP optimal solution
• Don’t separate any integer point

Many different families of CPs; which to use when?

LP optimal solution

Outline

1. Background
i. Branch-and-cut (B&C) algorithm
ii. Brief overview of ML for B&C: non-GenAI

2. LLMs for speeding up solvers

3. Takeaways

General setup
ML for MILP solvers

• Define a parameterized solver . E.g.:A(θ)

General setup
ML for MILP solvers

• Define a parameterized solver . E.g.:A(θ)
• are parameters exposed by Gurobiθ

General setup
ML for MILP solvers

• Define a parameterized solver . E.g.:A(θ)
• are parameters exposed by Gurobiθ
• are parameters of a neural network embedded in solverθ

General setup
ML for MILP solvers

• Define a parameterized solver . E.g.:A(θ)
• are parameters exposed by Gurobiθ
• are parameters of a neural network embedded in solverθ

• Specify distribution over MILPs (models application domain)D z

General setup
ML for MILP solvers

• Define a parameterized solver . E.g.:A(θ)
• are parameters exposed by Gurobiθ
• are parameters of a neural network embedded in solverθ

• Specify distribution over MILPs (models application domain)D z

• Choose a performance metric ; e.g., runtimec(z, θ)

General setup
ML for MILP solvers

• Define a parameterized solver . E.g.:A(θ)
• are parameters exposed by Gurobiθ
• are parameters of a neural network embedded in solverθ

• Specify distribution over MILPs (models application domain)D z

• Choose a performance metric ; e.g., runtimec(z, θ)

• Ultimate goal: minimize (proxy of future cost on unseen MILPs)𝔼z∼D [c(z, θ)]

General setup
ML for MILP solvers

• Define a parameterized solver . E.g.:A(θ)
• are parameters exposed by Gurobiθ
• are parameters of a neural network embedded in solverθ

• Specify distribution over MILPs (models application domain)D z

• Choose a performance metric ; e.g., runtimec(z, θ)

• Ultimate goal: minimize (proxy of future cost on unseen MILPs)𝔼z∼D [c(z, θ)]
• Can learn offline or instance-aware configurationθ θ(z)

Blackbox algorithm configuration

• Early work: treat solver (largely) as a black-box; learn from evaluations

Blackbox algorithm configuration

• Early work: treat solver (largely) as a black-box; learn from evaluations

• Small subset of examples:

• ParamILS: iterated local search over parameter settings
Hutter, Hoos, Leyton-Brown, Stützle, JAIR’09

Blackbox algorithm configuration

• Early work: treat solver (largely) as a black-box; learn from evaluations

• Small subset of examples:

• ParamILS: iterated local search over parameter settings
Hutter, Hoos, Leyton-Brown, Stützle, JAIR’09

• SMAC: model-based search with surrogate predictions
Hutter, Hoos, Leyton-Brown, LION’11

Blackbox algorithm configuration

• Early work: treat solver (largely) as a black-box; learn from evaluations

• Small subset of examples:

• ParamILS: iterated local search over parameter settings
Hutter, Hoos, Leyton-Brown, Stützle, JAIR’09

• SMAC: model-based search with surrogate predictions
Hutter, Hoos, Leyton-Brown, LION’11

• Portfolio-based algorithm selection
Lobjois, Lemaître, AAAI'98; Gomes, Selman, AI’01; Xu, Hoos, Leyton-Brown, AAAI’10; Kadioglu et al., ECAI’10,
Sandholm, Handbook of Market Design’13

Blackbox algorithm configuration
Example: Portfolio-based algorithm configuration

Xu, Hoos, Leyton-Brown, AAAI’10

Blackbox algorithm configuration
Example: Portfolio-based algorithm configuration

• One configuration rarely dominates across diverse MILP instances

Xu, Hoos, Leyton-Brown, AAAI’10

Blackbox algorithm configuration
Example: Portfolio-based algorithm configuration

• One configuration rarely dominates across diverse MILP instances

• Portfolios combine multiple strong configurations

Xu, Hoos, Leyton-Brown, AAAI’10

Blackbox algorithm configuration
Example: Portfolio-based algorithm configuration

• One configuration rarely dominates across diverse MILP instances

• Portfolios combine multiple strong configurations

• Hydra iteratively grows portfolio via targeted reconfiguration

Xu, Hoos, Leyton-Brown, AAAI’10

Blackbox algorithm configuration
Example: Portfolio-based algorithm configuration

• One configuration rarely dominates across diverse MILP instances

• Portfolios combine multiple strong configurations

• Hydra iteratively grows portfolio via targeted reconfiguration
• Tune new member against instances current portfolio solves poorly

Xu, Hoos, Leyton-Brown, AAAI’10

Blackbox algorithm configuration
Example: Portfolio-based algorithm configuration

• One configuration rarely dominates across diverse MILP instances

• Portfolios combine multiple strong configurations

• Hydra iteratively grows portfolio via targeted reconfiguration
• Tune new member against instances current portfolio solves poorly

• Instance features enable per-instance selection (static & quick probing runs)

Xu, Hoos, Leyton-Brown, AAAI’10

Blackbox algorithm configuration
Example: Portfolio-based algorithm configuration

• One configuration rarely dominates across diverse MILP instances

• Portfolios combine multiple strong configurations

• Hydra iteratively grows portfolio via targeted reconfiguration
• Tune new member against instances current portfolio solves poorly

• Instance features enable per-instance selection (static & quick probing runs)
• Choose configuration before solving each instance

Xu, Hoos, Leyton-Brown, AAAI’10

Next gen: don’t treat solver as blackbox; adapt to solver components. E.g.:

Configuration of solver components

Cut selection Variable selection Node selection
Tang et al., ICML’20

Balcan et al., NeurIPS’21
Balcan et al., NeurIPS’22

Paulus et al., ICML’22
Wang et al., ICLR’23
Li et al., NeurIPS’23

Deza, Khalil, IJCAI’23
Ling et al., AAAI’24

Cheng, Basu, NeurIPS’24
Cheng et al., NeurIPS’24

…

Khalil et al., AAAI’16
Alvarez et al., INFORMS JoC’17

Balcan et al., ICML’18
Gasse et al., NeurIPS’19
Gupta et al., NeurIPS’20
Zarpellon et al., AAAI’21

Scavuzzo et al., NeurIPS’22
…

He et al., NeurIPS’14
Labassi et al., NeurIPS’22

Zhang et al., ICLR’25
…

Next gen: don’t treat solver as blackbox; adapt to solver components. E.g.:

Configuration of solver components

Cut selection Variable selection Node selection
Tang et al., ICML’20

Balcan et al., NeurIPS’21
Balcan et al., NeurIPS’22

Paulus et al., ICML’22
Wang et al., ICLR’23
Li et al., NeurIPS’23

Deza, Khalil, IJCAI’23
Ling et al., AAAI’24

Cheng, Basu, NeurIPS’24
Cheng et al., NeurIPS’24

…

Khalil et al., AAAI’16
Alvarez et al., INFORMS JoC’17

Balcan et al., ICML’18
Gasse et al., NeurIPS’19
Gupta et al., NeurIPS’20
Zarpellon et al., AAAI’21

Scavuzzo et al., NeurIPS’22
…

He et al., NeurIPS’14
Labassi et al., NeurIPS’22

Zhang et al., ICLR’25
…

Graph neural networks for variable selection

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurIPS’19

Graph neural networks for variable selection

• Key idea: encode B&B state as variable-constraint bipartite graph

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurIPS’19

Graph neural networks for variable selection

• Key idea: encode B&B state as variable-constraint bipartite graph
• Use bipartite graph neural network as a variable selection policy

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurIPS’19

Graph neural networks for variable selection

• Key idea: encode B&B state as variable-constraint bipartite graph
• Use bipartite graph neural network as a variable selection policy

• Training: behavioral cloning of strong branching (expensive gold standard)

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurIPS’19

Graph neural networks for variable selection

• Key idea: encode B&B state as variable-constraint bipartite graph
• Use bipartite graph neural network as a variable selection policy

• Training: behavioral cloning of strong branching (expensive gold standard)

• Integrated in SCIP; four NP-hard benchmarks

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurIPS’19

Graph neural networks for variable selection

• Key idea: encode B&B state as variable-constraint bipartite graph
• Use bipartite graph neural network as a variable selection policy

• Training: behavioral cloning of strong branching (expensive gold standard)

• Integrated in SCIP; four NP-hard benchmarks

• Results:
• Best imitation accuracy among ML baselines

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurIPS’19

Graph neural networks for variable selection

• Key idea: encode B&B state as variable-constraint bipartite graph
• Use bipartite graph neural network as a variable selection policy

• Training: behavioral cloning of strong branching (expensive gold standard)

• Integrated in SCIP; four NP-hard benchmarks

• Results:
• Best imitation accuracy among ML baselines
• Generally faster than SCIP default; good size generalization

Gasse, Chételat, Ferroni, Charlin, Lodi, NeurIPS’19

Benchmarks

Benchmarks

• MIPLIB 2017: widely used “real-world” MILP benchmark library

Benchmarks

• MIPLIB 2017: widely used “real-world” MILP benchmark library
• Benchmark set: 240 instances, solvable, numerically stable

Benchmarks

• MIPLIB 2017: widely used “real-world” MILP benchmark library
• Benchmark set: 240 instances, solvable, numerically stable
• Collection set: 1065 diverse instances, less filtered

Benchmarks

• MIPLIB 2017: widely used “real-world” MILP benchmark library
• Benchmark set: 240 instances, solvable, numerically stable
• Collection set: 1065 diverse instances, less filtered

• Distributional MIPLIB: library of MILP distributions [Huang et al., arXiv’24]
• More than 35 distributions across 13 domains

Benchmarks

• MIPLIB 2017: widely used “real-world” MILP benchmark library
• Benchmark set: 240 instances, solvable, numerically stable
• Collection set: 1065 diverse instances, less filtered

• Distributional MIPLIB: library of MILP distributions [Huang et al., arXiv’24]
• More than 35 distributions across 13 domains
• Includes synthetic and real-world domains, multiple hardness levels

Benchmarks

• MIPLIB 2017: widely used “real-world” MILP benchmark library
• Benchmark set: 240 instances, solvable, numerically stable
• Collection set: 1065 diverse instances, less filtered

• Distributional MIPLIB: library of MILP distributions [Huang et al., arXiv’24]
• More than 35 distributions across 13 domains
• Includes synthetic and real-world domains, multiple hardness levels

• MILP-Evolve [Li et al. ICLR’25]

Benchmarks

• MIPLIB 2017: widely used “real-world” MILP benchmark library
• Benchmark set: 240 instances, solvable, numerically stable
• Collection set: 1065 diverse instances, less filtered

• Distributional MIPLIB: library of MILP distributions [Huang et al., arXiv’24]
• More than 35 distributions across 13 domains
• Includes synthetic and real-world domains, multiple hardness levels

• MILP-Evolve [Li et al. ICLR’25]
• “Evolving” pipeline for generating new MILP families

Benchmarks

• MIPLIB 2017: widely used “real-world” MILP benchmark library
• Benchmark set: 240 instances, solvable, numerically stable
• Collection set: 1065 diverse instances, less filtered

• Distributional MIPLIB: library of MILP distributions [Huang et al., arXiv’24]
• More than 35 distributions across 13 domains
• Includes synthetic and real-world domains, multiple hardness levels

• MILP-Evolve [Li et al. ICLR’25]
• “Evolving” pipeline for generating new MILP families
• Designed to be highly diverse to mimic real-world optimization scenarios

Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search for MILP heuristics

3. Takeaways

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Key challenge
Conventional data-driven approaches require a lot of compute

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Key challenge
Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Key challenge
Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Key challenge
Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs
2. Find configuration(s) with good average runtime over training set
3. Hope for a good runtime from the same application (or distribution)

Key challenge: Evaluating one configuration’s average runtime

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Key challenge
Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs
2. Find configuration(s) with good average runtime over training set
3. Hope for a good runtime from the same application (or distribution)

Key challenge: Evaluating one configuration’s average runtime
requires solving every MILP in the training set using that configuration

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Key challenge
Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs
2. Find configuration(s) with good average runtime over training set
3. Hope for a good runtime from the same application (or distribution)

Key challenge: Evaluating one configuration’s average runtime
requires solving every MILP in the training set using that configuration

Key question: Can we generate problem-specific cutting plane configurations

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Key challenge
Conventional data-driven approaches require a lot of compute

Conventional data-driven configuration pipeline:
1. Gather a training set of MILPs
2. Find configuration(s) with good average runtime over training set
3. Hope for a good runtime from the same application (or distribution)

Key challenge: Evaluating one configuration’s average runtime
requires solving every MILP in the training set using that configuration

Key question: Can we generate problem-specific cutting plane configurations
with little to no historical data and compute?

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Our contributions

• First LLM-based framework to configure MILP solvers

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Our contributions

• First LLM-based framework to configure MILP solvers

• Consistent improvement over solver default (SCIP and Gurobi)

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Our contributions

• First LLM-based framework to configure MILP solvers

• Consistent improvement over solver default (SCIP and Gurobi)
• Pareto-optimal compared to baseline methods

log(# MILP solves)

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Avg improvement
over SCIP (%)

Our method
Baselines

SCIP

Our contributions

• First LLM-based framework to configure MILP solvers

• Consistent improvement over solver default (SCIP and Gurobi)
• Pareto-optimal compared to baseline methods

log(# MILP solves)

Lawless, Li, Wikum, Udell, V, CPAIOR’25

log(# MILP solves)

Avg improvement
over SCIP (%)

Our method
Baselines

Avg improvement
over Gurobi (%)

SCIP Gurobi

Why LLMs

• LLMs are powerful, but they can’t do everything

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Why LLMs

• LLMs are powerful, but they can’t do everything

• They are good at information retrieval

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Why LLMs

• LLMs are powerful, but they can’t do everything

• They are good at information retrieval

• There’s a rich literature on cutting planes

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Challenges to using LLMs

• LLM output can be highly unstable

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Challenges to using LLMs

• LLM output can be highly unstable

• Cutting plane separators are solver-specific

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Challenges to using LLMs

• LLM output can be highly unstable

• Cutting plane separators are solver-specific
• Details of solver separators are not always available

Lawless, Li, Wikum, Udell, V, CPAIOR’25

LLM for cold-start configuration pipeline

LLM for cold-start configuration pipeline

Text summary

LaTeX model

Problem description

Parameter name

Text description

Cutting Plane
description

LLM inputs

LLM for cold-start configuration pipeline

Text summary

LaTeX model

Problem description

Parameter name

Text description

Cutting Plane
description

LLM

LLM inputs

LLM for cold-start configuration pipeline

Text summary

LaTeX model

Problem description

Parameter name

Text description

Cutting Plane
description

repeat n times

LLM

LLM inputs

LLM for cold-start configuration pipeline

Text summary

LaTeX model

Problem description

Parameter name

Text description

Cutting Plane
description

repeat n times

LLM

Config 1

Config 2

Config n

…
Config 3

LLM inputs Configuration
pool

LLM for cold-start configuration pipeline

Text summary

LaTeX model

Problem description

Parameter name

Text description

Cutting Plane
description

repeat n times

LLM

Config 1

Config 2

Config n

…
Config 3

Cluster
Configs

LLM inputs Configuration
pool

LLM for cold-start configuration pipeline

Text summary

LaTeX model

Problem description

Parameter name

Text description

Cutting Plane
description

repeat n times

LLM

Config 1

Config 2

Config n

…
Config 3

Cluster
Configs

LLM inputs Configuration
pool

K-medoids
cluster

LLM for cold-start configuration pipeline

Text summary

LaTeX model

Problem description

Parameter name

Text description

Cutting Plane
description

repeat n times

LLM

Config 1

Config 2

Config n

…
Config 3

Cluster
Configs

Medoid
config 1

Medoid
config k

Medoid
config 2

…

LLM inputs Configuration
pool

K-medoids
cluster

LLM for cold-start configuration pipeline

Text summary

LaTeX model

Problem description

Parameter name

Text description

Cutting Plane
description

repeat n times

LLM

Config 1

Config 2

Config n

…
Config 3

Cluster
Configs

Test k
configs

&
 return

best

Medoid
config 1

Medoid
config k

Medoid
config 2

…

LLM inputs Configuration
pool

K-medoids
cluster

LLM for cold-start configuration pipeline

Text summary

LaTeX model

Problem description

Parameter name

Text description

Cutting Plane
description

repeat n times

LLM

Config 1

Config 2

Config n

…
Config 3

Cluster
Configs

Test k
configs

&
 return

best

Config

Medoid
config 1

Medoid
config k

Medoid
config 2

…

LLM inputs Configuration
pool

K-medoids
cluster

Final
configuration

Experimental set-up
Baselines and our method

• Pruning: turns off all CPs not used while solving validation set

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Experimental set-up
Baselines and our method

• Pruning: turns off all CPs not used while solving validation set
• Use the default setting for other CPs

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Experimental set-up
Baselines and our method

• Pruning: turns off all CPs not used while solving validation set
• Use the default setting for other CPs

• Search : sample candidate configurations uniformly at random(d) d

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Experimental set-up
Baselines and our method

• Pruning: turns off all CPs not used while solving validation set
• Use the default setting for other CPs

• Search : sample candidate configurations uniformly at random(d) d
• Use the one with best median performance on validation set

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Experimental set-up
Baselines and our method

• Pruning: turns off all CPs not used while solving validation set
• Use the default setting for other CPs

• Search : sample candidate configurations uniformly at random(d) d
• Use the one with best median performance on validation set

• Zero-shot: use medoid of the largest cluster

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Experimental set-up
Baselines and our method

• Pruning: turns off all CPs not used while solving validation set
• Use the default setting for other CPs

• Search : sample candidate configurations uniformly at random(d) d
• Use the one with best median performance on validation set

• Zero-shot: use medoid of the largest cluster

• Cold-start :(k)

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Experimental set-up
Baselines and our method

• Pruning: turns off all CPs not used while solving validation set
• Use the default setting for other CPs

• Search : sample candidate configurations uniformly at random(d) d
• Use the one with best median performance on validation set

• Zero-shot: use medoid of the largest cluster

• Cold-start :(k)
1. Run medoids clusteringk

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Experimental set-up
Baselines and our method

• Pruning: turns off all CPs not used while solving validation set
• Use the default setting for other CPs

• Search : sample candidate configurations uniformly at random(d) d
• Use the one with best median performance on validation set

• Zero-shot: use medoid of the largest cluster

• Cold-start :(k)
1. Run medoids clusteringk
2. Select the best performing medoid on the validation set

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Experimental set-up
Datasets, model

Dataset # vars # constrs

Binary packing 300 300

Capacitated facility location 100 100

Combinatorial auction 100 500

Maximum independent set 500 1088

Max cut 54 134

Packing 60 60

Set cover 500 250

Load balancing 64340 61000

Middle-mile consolidation
network design (MM) 569 248

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Experimental set-up
Datasets, model

Classic MILP families

Complex real-world
MILP families

Dataset # vars # constrs

Binary packing 300 300

Capacitated facility location 100 100

Combinatorial auction 100 500

Maximum independent set 500 1088

Max cut 54 134

Packing 60 60

Set cover 500 250

Load balancing 64340 61000

Middle-mile consolidation
network design (MM) 569 248

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Experimental set-up
Datasets, model

Classic MILP families

Complex real-world
MILP families

Model: GPT-4o

Training set size: 100
Val set size: 30

Evaluation metric:
% improvement over
default solve time

Dataset # vars # constrs

Binary packing 300 300

Capacitated facility location 100 100

Combinatorial auction 100 500

Maximum independent set 500 1088

Max cut 54 134

Packing 60 60

Set cover 500 250

Load balancing 64340 61000

Middle-mile consolidation
network design (MM) 569 248

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Empirical results
Cold-start(5) yields 6–71% faster runtimes than SCIP’s default

Problem Pruning Search(5) Search(500) Zero-shot Cold-start(5)

Bin. pack. 1.33 9.23 39.3 16.76 38.35

Cap. fac. -0.64 9.57 2.72 7.61 26.12

Comb. auc. 1.96 58.1 64.01 21.06 63.59

Ind. set 2.07 26.95 67.01 21.6 71.95

Max. cut -2.18 17.72 69.63 71.43 71.01

Pack. 15.87 -13.81 24.49 15.09 25.51

Set cov. 6.62 -10.04 61.08 61.72 61.74

Load bal. 0.08 -150.01 -50.02 0.0 6.37

MM -0.12 -8.83 50.03 -6.52 53.3

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Empirical results
Cold-start(5) yields 6–71% faster runtimes than SCIP’s default

By testing only 5 configs,
we match/beat Search(500)
on all instances

Without solving any MILPs,
we match/beat Search(500)
on 4/9 instances

Problem Pruning Search(5) Search(500) Zero-shot Cold-start(5)

Bin. pack. 1.33 9.23 39.3 16.76 38.35

Cap. fac. -0.64 9.57 2.72 7.61 26.12

Comb. auc. 1.96 58.1 64.01 21.06 63.59

Ind. set 2.07 26.95 67.01 21.6 71.95

Max. cut -2.18 17.72 69.63 71.43 71.01

Pack. 15.87 -13.81 24.49 15.09 25.51

Set cov. 6.62 -10.04 61.08 61.72 61.74

Load bal. 0.08 -150.01 -50.02 0.0 6.37

MM -0.12 -8.83 50.03 -6.52 53.3

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Empirical results
Cold-start(5) yields 6–71% faster runtimes than SCIP’s default

By testing only 5 configs,
we match/beat Search(500)
on all instances

Without solving any MILPs,
we match/beat Search(500)
on 4/9 instances

Problem Pruning Search(5) Search(500) Zero-shot Cold-start(5)

Bin. pack. 1.33 9.23 39.3 16.76 38.35

Cap. fac. -0.64 9.57 2.72 7.61 26.12

Comb. auc. 1.96 58.1 64.01 21.06 63.59

Ind. set 2.07 26.95 67.01 21.6 71.95

Max. cut -2.18 17.72 69.63 71.43 71.01

Pack. 15.87 -13.81 24.49 15.09 25.51

Set cov. 6.62 -10.04 61.08 61.72 61.74

Load bal. 0.08 -150.01 -50.02 0.0 6.37

MM -0.12 -8.83 50.03 -6.52 53.3

Lawless, Li, Wikum, Udell, V, CPAIOR’25

On out-of-distribution instances
25 families of problem from MILP-Evolve dataset [Li et al. ICLR’25]

• New dataset, “evolving” pipeline for generating new MILP families

• Designed to be highly diverse to mimic real-world optimization scenarios

Relative improvement over SCIP (%)

Search(5)

Search(500)

Zero-shot

Cold-start(5)
-150 -100 -50 0 50 100

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Ablations
Our design choices are robust

Setting Ind. set Max cut Bin. pack. MM

Ours 71.95 71.01 38.35 53.3

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Ablations
Our design choices are robust

Disabling CPs can reduce performance

Setting Ind. set Max cut Bin. pack. MM

Ours 71.95 71.01 38.35 53.3

Disable cutting planes -14.96 71.25 30.43 -150

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Ablations
Our design choices are robust

Disabling CPs can reduce performance

Our CP descriptions boost performance

Setting Ind. set Max cut Bin. pack. MM

Ours 71.95 71.01 38.35 53.3

Disable cutting planes -14.96 71.25 30.43 -150

No CP text descr. 72.27 71.49 16.85 9.29

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Ablations
Our design choices are robust

Disabling CPs can reduce performance

Our CP descriptions boost performance

k-medoids outperforms simpler heuristics

Setting Ind. set Max cut Bin. pack. MM

Ours 71.95 71.01 38.35 53.3

Disable cutting planes -14.96 71.25 30.43 -150

No CP text descr. 72.27 71.49 16.85 9.29

Ensembling strategies

Average configuration 20.65 71.24 17.52 -11.08

Mode configuration 21.08 71.44 18.11 -12.63

Smallest configuration 20.83 70.91 17.42 -4.74

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Recap
Can we use LLMs to configure MILP solvers with minimal training data?

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Recap
Can we use LLMs to configure MILP solvers with minimal training data?

• New LLM-based framework to configure cutting plane separators

• Finds high-performing configuration by solving only a few MILPs

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Recap
Can we use LLMs to configure MILP solvers with minimal training data?

• New LLM-based framework to configure cutting plane separators

• Finds high-performing configuration by solving only a few MILPs

• Ensembling strategy to build portfolio of high-performing configurations

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Recap
Can we use LLMs to configure MILP solvers with minimal training data?

• New LLM-based framework to configure cutting plane separators

• Finds high-performing configuration by solving only a few MILPs

• Ensembling strategy to build portfolio of high-performing configurations

• Requires no custom solver interface

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Recap
Can we use LLMs to configure MILP solvers with minimal training data?

• New LLM-based framework to configure cutting plane separators

• Finds high-performing configuration by solving only a few MILPs

• Ensembling strategy to build portfolio of high-performing configurations

• Requires no custom solver interface

• Competitive with existing configuration approaches

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Recap
Can we use LLMs to configure MILP solvers with minimal training data?

• New LLM-based framework to configure cutting plane separators

• Finds high-performing configuration by solving only a few MILPs

• Ensembling strategy to build portfolio of high-performing configurations

• Requires no custom solver interface

• Competitive with existing configuration approaches
but only requires a fraction of the training data and computation time

Lawless, Li, Wikum, Udell, V, CPAIOR’25

Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search for MILP heuristics

a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways

LLMs for automated heuristic design

LLMs for automated heuristic design

• Heuristic design is central to NP-hard optimization

LLMs for automated heuristic design

• Heuristic design is central to NP-hard optimization
• But manual heuristic design is slow, relying on human ingenuity

LLMs for automated heuristic design

• Heuristic design is central to NP-hard optimization
• But manual heuristic design is slow, relying on human ingenuity

• Automated heuristic design/scheduling goes back to the 1960s
• Fisher, Thompson, ’63; Crowston et al., ’63; survey by Burke et al., JORS’13

LLMs for automated heuristic design

• Heuristic design is central to NP-hard optimization
• But manual heuristic design is slow, relying on human ingenuity

• Automated heuristic design/scheduling goes back to the 1960s
• Fisher, Thompson, ’63; Crowston et al., ’63; survey by Burke et al., JORS’13

• Automated heuristic design with LLMs:

LLMs for automated heuristic design

• Heuristic design is central to NP-hard optimization
• But manual heuristic design is slow, relying on human ingenuity

• Automated heuristic design/scheduling goes back to the 1960s
• Fisher, Thompson, ’63; Crowston et al., ’63; survey by Burke et al., JORS’13

• Automated heuristic design with LLMs:
• LLMs generate heuristic code

LLMs for automated heuristic design

• Heuristic design is central to NP-hard optimization
• But manual heuristic design is slow, relying on human ingenuity

• Automated heuristic design/scheduling goes back to the 1960s
• Fisher, Thompson, ’63; Crowston et al., ’63; survey by Burke et al., JORS’13

• Automated heuristic design with LLMs:
• LLMs generate heuristic code
• Heuristic fitness scored automatically

LLMs for automated heuristic design

• Heuristic design is central to NP-hard optimization
• But manual heuristic design is slow, relying on human ingenuity

• Automated heuristic design/scheduling goes back to the 1960s
• Fisher, Thompson, ’63; Crowston et al., ’63; survey by Burke et al., JORS’13

• Automated heuristic design with LLMs:
• LLMs generate heuristic code
• Heuristic fitness scored automatically
• Evolutionary selection keeps improved heuristics

E.g., FunSearch [Romera-Paredes, Nature’24], ReEvo [Ye et al., NeurIPS’24], AlphaEvolve [Novikov et al., ’25], …

Evolution of Heuristics [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24]

Example: Online bin packing

• Task: Pack items of varying sizes into fewest bins

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Figure by Fawzi, Romera-Paredes

Evolution of Heuristics [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24]

Example: Online bin packing

• Task: Pack items of varying sizes into fewest bins

• Items arrive sequentially

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Figure by Fawzi, Romera-Paredes

Evolution of Heuristics [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24]

Example: Online bin packing

• Task: Pack items of varying sizes into fewest bins

• Items arrive sequentially
• Must be packed into a bin immediately

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Figure by Fawzi, Romera-Paredes

Evolution of Heuristics [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24]

Example: Online bin packing

• Task: Pack items of varying sizes into fewest bins

• Items arrive sequentially
• Must be packed into a bin immediately
• No knowledge of future arrivals

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Figure by Fawzi, Romera-Paredes

Evolution of Heuristics [Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24]

Example: Online bin packing

• Task: Pack items of varying sizes into fewest bins

• Items arrive sequentially
• Must be packed into a bin immediately
• No knowledge of future arrivals

• Each bin has fixed capacity (experiments:)C = 100

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Figure by Fawzi, Romera-Paredes

Heuristic

Example: Online bin packing
Heuristic representation

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Heuristic

Example: Online bin packing
Heuristic representation

Code
def heuristic(item, bins):
 """
 item: scalar item size
 bins: 1D np.array of remaining capacities
 returns: per-bin scores (higher is better)

…

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Heuristic

Example: Online bin packing
Heuristic representation

Code
def heuristic(item, bins):
 """
 item: scalar item size
 bins: 1D np.array of remaining capacities
 returns: per-bin scores (higher is better)

…

Natural language description

Incorporates a weighted average of the
utilization ratio, dynamic adjustment, and an
exponentially decaying factor, with different
parameter settings to minimize the number of
used bins.

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Heuristic

Example: Online bin packing
Heuristic representation

Fitness: 0.0196

Code
def heuristic(item, bins):
 """
 item: scalar item size
 bins: 1D np.array of remaining capacities
 returns: per-bin scores (higher is better)

…

Natural language description

Incorporates a weighted average of the
utilization ratio, dynamic adjustment, and an
exponentially decaying factor, with different
parameter settings to minimize the number of
used bins.

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Example: Online bin packing
Fitness metric

• Test instances [Romera-Paredes et al., Nature’24]:
• Five Weibull test instances, each with 5000 items

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Example: Online bin packing
Fitness metric

• Test instances [Romera-Paredes et al., Nature’24]:
• Five Weibull test instances, each with 5000 items

• lower bound on opt bin count [Martello & Toth ‘90]ℓb =

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Example: Online bin packing
Fitness metric

• Test instances [Romera-Paredes et al., Nature’24]:
• Five Weibull test instances, each with 5000 items

• lower bound on opt bin count [Martello & Toth ‘90]ℓb =
• number of bins used by heuristicn =

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Example: Online bin packing
Fitness metric

• Test instances [Romera-Paredes et al., Nature’24]:
• Five Weibull test instances, each with 5000 items

• lower bound on opt bin count [Martello & Toth ‘90]ℓb =
• number of bins used by heuristicn =

• across the test instancesFitness = avg (ℓb
n)

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

1. Initialization: generate initial heuristics using Initialization PromptN

Algorithm overview

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

1. Initialization: generate initial heuristics using Initialization PromptN

2. Heuristic generation:

Algorithm overview

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

1. Initialization: generate initial heuristics using Initialization PromptN

2. Heuristic generation:
Apply 5 Evolution Prompts in parallel (new heuristics)5N

Algorithm overview

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

1. Initialization: generate initial heuristics using Initialization PromptN

2. Heuristic generation:
Apply 5 Evolution Prompts in parallel (new heuristics)5N

i. Select parent heuristic(s) to form prompt

Algorithm overview

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

1. Initialization: generate initial heuristics using Initialization PromptN

2. Heuristic generation:
Apply 5 Evolution Prompts in parallel (new heuristics)5N

i. Select parent heuristic(s) to form prompt
ii. LLM generates new thought and code

Algorithm overview

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

1. Initialization: generate initial heuristics using Initialization PromptN

2. Heuristic generation:
Apply 5 Evolution Prompts in parallel (new heuristics)5N

i. Select parent heuristic(s) to form prompt
ii. LLM generates new thought and code
iii. Evaluate fitness on test instances

Algorithm overview

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

1. Initialization: generate initial heuristics using Initialization PromptN

2. Heuristic generation:
Apply 5 Evolution Prompts in parallel (new heuristics)5N

i. Select parent heuristic(s) to form prompt
ii. LLM generates new thought and code
iii. Evaluate fitness on test instances
iv. Add feasible heuristics to population

Algorithm overview

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

1. Initialization: generate initial heuristics using Initialization Prompt

2. Heuristic generation:
Apply 5 Evolution Prompts in parallel (new heuristics)

i. Select parent heuristic(s) to form prompt
ii. LLM generates new thought and code
iii. Evaluate fitness on test instances
iv. Add feasible heuristics to population

3. Retain top heuristics by fitness; return to Step 1

N

5N

N

Algorithm overview

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

X X X X X
X X X X X
X X

Example: Online bin packing
Initialization prompt

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

• Help design a new heuristic that scores a set of bins to assign an item

Example: Online bin packing
Initialization prompt

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

• Help design a new heuristic that scores a set of bins to assign an item

• In each step, the item will be assigned to the bin with the maximum score

Example: Online bin packing
Initialization prompt

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

• Help design a new heuristic that scores a set of bins to assign an item

• In each step, the item will be assigned to the bin with the maximum score

• If a bin is full, it will not be used

Example: Online bin packing
Initialization prompt

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

• Help design a new heuristic that scores a set of bins to assign an item

• In each step, the item will be assigned to the bin with the maximum score

• If a bin is full, it will not be used

• The final goal is to minimize the number of used bins

Example: Online bin packing
Initialization prompt

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

• Help design a new heuristic that scores a set of bins to assign an item

• In each step, the item will be assigned to the bin with the maximum score

• If a bin is full, it will not be used

• The final goal is to minimize the number of used bins

• Firstly, describe your new heuristic and main steps in one sentence

Example: Online bin packing
Initialization prompt

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

• Help design a new heuristic that scores a set of bins to assign an item

• In each step, the item will be assigned to the bin with the maximum score

• If a bin is full, it will not be used

• The final goal is to minimize the number of used bins

• Firstly, describe your new heuristic and main steps in one sentence

Evolution prompts

• E1 – Diverse exploration: generate entirely new heuristic ideas from scratch

• E2 – Shared-Idea variants: generate based on high-performing “themes”

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Evolution prompts

• E1 – Diverse exploration: generate entirely new heuristic ideas from scratch

• E2 – Shared-Idea variants: generate based on high-performing “themes”

• M1 – Edit: modify an existing heuristic

• M2 – Parameter tuning: fine-tune numeric settings or thresholds in code

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Evolution prompts

• E1 – Diverse exploration: generate entirely new heuristic ideas from scratch

• E2 – Shared-Idea variants: generate based on high-performing “themes”

• M1 – Edit: modify an existing heuristic

• M2 – Parameter tuning: fine-tune numeric settings or thresholds in code

• M3 – simplification: prune unnecessary components or redundant logic

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

0.9620

0.9689

0.9825

0.9927
0.9928

0.9929
0.9932

M1: penalty for large bins
(bins - item) < 0.2*bins.max()

E1, deviation from average
abs(bins - np.mean(bins))

E2, utilization of cubic root
cbrt(item) / (bins - item)

E2, combination of utilization
and penalty
cbrt(item) / (bins - item) –
(bins - item) < 0.4 * bins.max()

E1, exponent term
exp(-(bins - item)**2)

M2, hybrid adjustment
diff = bins - item
where(diff > (item * 3), (1 - diff / bins) *
sqrt(diff + 3) + 0.8, (1 - diff / bins) *
sqrt(diff + 0.5) + 0.3)

M3, new parameter
settings

E1, hybrid term
1 - (bins - item) / bins *
sqrt(bins - item + 1)

Pe
rf

or
m

an
ce

 (o
bj

ec
tiv

e)

Number of generations
1 5 10 15 20

0.9670

Input: item, bins
▪ item: size of item
▪ bins: bin capacities

Output: scores
▪ scores: scores for

assigning item

Heuristic In&Out

0.9621
Initialization

Final
Heuristic

The heuristic incorporates a weighted average of the utilization
ratio, dynamic adjustment, and an exponentially decaying factor,
with different parameter settings to minimize the number of used
bins.

def heuristic(item, bins):
diff = bins-item # remaining capacity
exp = exp(diff) # exponent term
sqrt = sqrt(diff) # square root term
ulti = 1-diff/bins # utilization term
comb = ulti * sqrt # combination of utilization and square root
adjust = where(diff > (item * 3), comb + 0.8, comb + 0.3)

hybrid adjustment term to penalize large bins
hybrid_exp = bins / ((exp + 0.7) *exp)

hybrid score based on exponent term
scores = hybrid_exp + adjust

sum of hybrid score and adjustment
return scores

Human (Best Fit)

def heuristic(item, bins):
scores = item - bins
return scores

FunSearch

def heuristic(item, bins):
max_bin= max(bins)
comb1 = (bins - max_bin)**2 / item
comb2 = bins**2 / item**2
comb3 = bins**2 / item**3
scores = comb1 + comb2 + comb3
scores[bins>item] = -score[bins>item]
scores[1:] -= score[:-1]
return scores

EoH

Example: Online bin packing
Experimental setup

• Baselines:
• First Fit: place item in first bin that fits

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Example: Online bin packing
Experimental setup

• Baselines:
• First Fit: place item in first bin that fits
• Best Fit: place item in bin w/ least available space

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Example: Online bin packing
Experimental setup

• Baselines:
• First Fit: place item in first bin that fits
• Best Fit: place item in bin w/ least available space
• Published FunSearch heuristic as-is

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Example: Online bin packing
Experimental setup

• Baselines:
• First Fit: place item in first bin that fits
• Best Fit: place item in bin w/ least available space
• Published FunSearch heuristic as-is

• Problem sizes: 1000–10,000 items

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Example: Online bin packing
Experimental setup

• Baselines:
• First Fit: place item in first bin that fits
• Best Fit: place item in bin w/ least available space
• Published FunSearch heuristic as-is

• Problem sizes: 1000–10,000 items

• Capacities: C = 100 and C = 500

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Example: Online bin packing
Experimental setup

• Baselines:
• First Fit: place item in first bin that fits
• Best Fit: place item in bin w/ least available space
• Published FunSearch heuristic as-is

• Problem sizes: 1000–10,000 items

• Capacities: C = 100 and C = 500

• Each setting: 5 randomly generated instances

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

Bin packing results

Metric: average gap to lower bound [Martello & Toth ‘90]

Liu, Tong, Yuan, Lin, Luo, Wang, Lu, Zhang, ICML’24

C=100 C=500
Method 1k items 5k items 10k items 1k items 5k items 10k items
First Fit 5.32% 4.40% 4.44% 4.97% 4.27% 4.28%
Best Fit 4.87% 4.08% 4.09% 4.50% 3.91% 3.95%

FunSearch 3.78% 0.80% 0.33% 6.75% 1.47% 0.74%
EoH 2.24% 0.80% 0.61% 2.13% 0.78% 0.61%

Beyond EoH
Recent examples

• Reflective Evolution [Ye et al., NeurIPS’24]
• Uses verbal gradients and reflective critiques to guide evolution

Beyond EoH
Recent examples

• Reflective Evolution [Ye et al., NeurIPS’24]
• Uses verbal gradients and reflective critiques to guide evolution

• Multi-objective Evolution of Heuristic [Yao et al., AAAI’25]

Beyond EoH
Recent examples

• Reflective Evolution [Ye et al., NeurIPS’24]
• Uses verbal gradients and reflective critiques to guide evolution

• Multi-objective Evolution of Heuristic [Yao et al., AAAI’25]
• Evolves Pareto-optimal heuristics for multi-objective optimization

Beyond EoH
Recent examples

• Reflective Evolution [Ye et al., NeurIPS’24]
• Uses verbal gradients and reflective critiques to guide evolution

• Multi-objective Evolution of Heuristic [Yao et al., AAAI’25]
• Evolves Pareto-optimal heuristics for multi-objective optimization

• AlphaEvolve [Novikov et al., arXiv’25]

Beyond EoH
Recent examples

• Reflective Evolution [Ye et al., NeurIPS’24]
• Uses verbal gradients and reflective critiques to guide evolution

• Multi-objective Evolution of Heuristic [Yao et al., AAAI’25]
• Evolves Pareto-optimal heuristics for multi-objective optimization

• AlphaEvolve [Novikov et al., arXiv’25]
• Scales to file-level evolution

Beyond EoH
Recent examples

• Reflective Evolution [Ye et al., NeurIPS’24]
• Uses verbal gradients and reflective critiques to guide evolution

• Multi-objective Evolution of Heuristic [Yao et al., AAAI’25]
• Evolves Pareto-optimal heuristics for multi-objective optimization

• AlphaEvolve [Novikov et al., arXiv’25]
• Scales to file-level evolution
• Open-source version: OpenEvolve [Sharma, GitHub’25]

Beyond EoH
Recent examples

• Reflective Evolution [Ye et al., NeurIPS’24]
• Uses verbal gradients and reflective critiques to guide evolution

• Multi-objective Evolution of Heuristic [Yao et al., AAAI’25]
• Evolves Pareto-optimal heuristics for multi-objective optimization

• AlphaEvolve [Novikov et al., arXiv’25]
• Scales to file-level evolution
• Open-source version: OpenEvolve [Sharma, GitHub’25]
• Integrate with Deep Research methods: DeepEvolve [Liu et al., arXiv’25]

Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search for MILP heuristics

a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Overview of approach

• EvoCut automates cut discovery using LLMs plus evolution

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Overview of approach

• EvoCut automates cut discovery using LLMs plus evolution
• Initializes cut population; evolves via crossover and mutation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Overview of approach

• EvoCut automates cut discovery using LLMs plus evolution
• Initializes cut population; evolves via crossover and mutation

• Empirically checks optimal-solution preservation and fractional separation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Overview of approach

• EvoCut automates cut discovery using LLMs plus evolution
• Initializes cut population; evolves via crossover and mutation

• Empirically checks optimal-solution preservation and fractional separation

• Scores cuts by relative optimality-gap reduction

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Acceleration cuts
Inequalities added to speed up MILP solving

LP optimal solution

Integer optimal solution

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Acceleration cuts
Inequalities added to speed up MILP solving

• Valid cut: doesn’t separate any integer-feasible point

LP optimal solution

Integer optimal solution
Valid cut

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Acceleration cuts
Inequalities added to speed up MILP solving

• Valid cut: doesn’t separate any integer-feasible point

• Optimality-preserving cut: doesn’t separate the opt integer-feasible point

LP optimal solution

Integer optimal solution
Valid cut

Optimality-preserving cut

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Acceleration cuts
Inequalities added to speed up MILP solving

• Valid cut: doesn’t separate any integer-feasible point

• Optimality-preserving cut: doesn’t separate the opt integer-feasible point

• EvoCut cuts aren’t proven optimality-preserving; empirically checked
LP optimal solution

Integer optimal solution
Valid cut

Optimality-preserving cut

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over citiesn

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over citiesn

Edge variables: (travel)xij ∈ {0,1}, ∀i ≠ j i → j

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over citiesn

Edge variables: (travel)xij ∈ {0,1}, ∀i ≠ j i → j

Order variables: (visit position)ui ∈ {1,...,n}
Fix (start city); means travel u1 = 1 uj = 2 1 → j

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over citiesn

Edge variables: (travel)xij ∈ {0,1}, ∀i ≠ j i → j

Order variables: (visit position)ui ∈ {1,...,n}
Fix (start city); means travel u1 = 1 uj = 2 1 → j

Objective: (is the cost to travel)min ∑
i≠j

cijxij cij i → j

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over citiesn

Edge variables: (travel)xij ∈ {0,1}, ∀i ≠ j i → j

Order variables: (visit position)ui ∈ {1,...,n}
Fix (start city); means travel u1 = 1 uj = 2 1 → j

Objective: (is the cost to travel)min ∑
i≠j

cijxij cij i → j

Degree constraints (enter/leave exactly once): ∑
j≠i

xij = 1, ∑
j≠i

xji = 1, ∀i

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over citiesn

Edge variables: (travel)xij ∈ {0,1}, ∀i ≠ j i → j

Order variables: (visit position)ui ∈ {1,...,n}
Fix (start city); means travel u1 = 1 uj = 2 1 → j

Objective: (is the cost to travel)min ∑
i≠j

cijxij cij i → j

Degree constraints (enter/leave exactly once): ∑
j≠i

xij = 1, ∑
j≠i

xji = 1, ∀i

Subtour-elimination: ui − uj + nxij ≤ n − 1, ∀i ≠ j, i, j ∈ {2,…, n}

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over citiesn

Edge variables: (travel)xij ∈ {0,1}, ∀i ≠ j i → j

Order variables: (visit position)ui ∈ {1,...,n}
Fix (start city); means travel u1 = 1 uj = 2 1 → j

(Very simple) example of a CP found by EvoCut:

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over citiesn

Edge variables: (travel)xij ∈ {0,1}, ∀i ≠ j i → j

Order variables: (visit position)ui ∈ {1,...,n}
Fix (start city); means travel u1 = 1 uj = 2 1 → j

(Very simple) example of a CP found by EvoCut:
uj ≤ 2 + (n − 2)(1 − x1j), ∀j ∈ {2,…, n}

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over citiesn

Edge variables: (travel)xij ∈ {0,1}, ∀i ≠ j i → j

Order variables: (visit position)ui ∈ {1,...,n}
Fix (start city); means travel u1 = 1 uj = 2 1 → j

(Very simple) example of a CP found by EvoCut:
uj ≤ 2 + (n − 2)(1 − x1j), ∀j ∈ {2,…, n}
• If (travel)x1j = 1, uj ≤ 2 1 → j

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Example: Traveling salesman problem
Goal: find a minimum-cost Hamiltonian tour over citiesn

Edge variables: (travel)xij ∈ {0,1}, ∀i ≠ j i → j

Order variables: (visit position)ui ∈ {1,...,n}
Fix (start city); means travel u1 = 1 uj = 2 1 → j

(Very simple) example of a CP found by EvoCut:
uj ≤ 2 + (n − 2)(1 − x1j), ∀j ∈ {2,…, n}
• If (travel)x1j = 1, uj ≤ 2 1 → j
• If x1j = 0, uj ≤ n

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
Data preprocessing

• Construct evaluation set and verification set of MILPsDe Dv

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
Data preprocessing

• Construct evaluation set and verification set of MILPsDe Dv

• On : run baseline solver under fixed computational budgetDe ∀z ∈ De

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
Data preprocessing

• Construct evaluation set and verification set of MILPsDe Dv

• On : run baseline solver under fixed computational budgetDe ∀z ∈ De

• Record terminal optimality gap gapref(z)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
Data preprocessing

• Construct evaluation set and verification set of MILPsDe Dv

• On : run baseline solver under fixed computational budgetDe ∀z ∈ De

• Record terminal optimality gap gapref(z)

• On : run baseline solver to optimality and store optimal solutionDv

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
Data preprocessing

• Construct evaluation set and verification set of MILPsDe Dv

• On : run baseline solver under fixed computational budgetDe ∀z ∈ De

• Record terminal optimality gap gapref(z)

• On : run baseline solver to optimality and store optimal solutionDv
• Also store solution to LP relaxation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
How to verify and evaluate a candidate cut

• Verification on :Dv

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
How to verify and evaluate a candidate cut

• Verification on :Dv
1. Code must compile; errors trigger diagnostic prompt, retry

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
How to verify and evaluate a candidate cut

• Verification on :Dv
1. Code must compile; errors trigger diagnostic prompt, retry
2. OSP: maintains feasibility of optimal solutions across Dv

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
How to verify and evaluate a candidate cut

• Verification on :Dv
1. Code must compile; errors trigger diagnostic prompt, retry
2. OSP: maintains feasibility of optimal solutions across Dv
3. Usefulness: separate LP-optimal solution on some instanceDv

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
How to verify and evaluate a candidate cut

• Verification on :Dv
1. Code must compile; errors trigger diagnostic prompt, retry
2. OSP: maintains feasibility of optimal solutions across Dv
3. Usefulness: separate LP-optimal solution on some instanceDv

• Run baseline solver instances under fixed computational budget∀z ∈ De

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
How to verify and evaluate a candidate cut

• Verification on :Dv
1. Code must compile; errors trigger diagnostic prompt, retry
2. OSP: maintains feasibility of optimal solutions across Dv
3. Usefulness: separate LP-optimal solution on some instanceDv

• Run baseline solver instances under fixed computational budget∀z ∈ De

• Record terminal optimality gap with cutgapcut(z)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
How to verify and evaluate a candidate cut

• Verification on :Dv
1. Code must compile; errors trigger diagnostic prompt, retry
2. OSP: maintains feasibility of optimal solutions across Dv
3. Usefulness: separate LP-optimal solution on some instanceDv

• Run baseline solver instances under fixed computational budget∀z ∈ De

• Record terminal optimality gap with cutgapcut(z)

• Fitness: average relative gap change over : De
gapref(z) − gapcut(z)

gapref(z)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Method overview
Candidate cut generation

1. Initializer LLM seeds candidate cuts

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

X X X X X

X X X X X

X X

Method overview
Candidate cut generation

1. Initializer LLM seeds candidate cuts
• Uses model code and natural language description

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

X X X X X

X X X X X

X X

Method overview
Candidate cut generation

1. Initializer LLM seeds candidate cuts
• Uses model code and natural language description

2. Population evolved for generationsT

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

X X X X X

X X X X X

X X

Method overview
Candidate cut generation

1. Initializer LLM seeds candidate cuts
• Uses model code and natural language description

2. Population evolved for generationsT
• Elitism: carry top cuts into next generation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

X X X X X

X X X X X

X X

Method overview
Candidate cut generation

1. Initializer LLM seeds candidate cuts
• Uses model code and natural language description

2. Population evolved for generationsT
• Elitism: carry top cuts into next generation
• Selection: pick parents with probability proportional to fitness

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

X X X X X

X X X X X

X X

Method overview
Candidate cut generation

1. Initializer LLM seeds candidate cuts
• Uses model code and natural language description

2. Population evolved for generationsT
• Elitism: carry top cuts into next generation
• Selection: pick parents with probability proportional to fitness
• Reproduce: crossover (merge two parents) or mutation

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

X X X X X

X X X X X

X X

Method overview
Candidate cut generation

1. Initializer LLM seeds candidate cuts
• Uses model code and natural language description

2. Population evolved for generationsT
• Elitism: carry top cuts into next generation
• Selection: pick parents with probability proportional to fitness
• Reproduce: crossover (merge two parents) or mutation

3. Verify and evaluate offspring before including in population

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

X X X X X

X X X X X

X X

Method overview
Candidate cut generation

1. Initializer LLM seeds candidate cuts
• Uses model code and natural language description

2. Population evolved for generationsT
• Elitism: carry top cuts into next generation
• Selection: pick parents with probability proportional to fitness
• Reproduce: crossover (merge two parents) or mutation

3. Verify and evaluate offspring before including in population
• Failed offspring triggers feedback; retry up to max

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

X X X X X

X X X X X

X X

Experimental setup

• Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Experimental setup

• Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

• Benchmarks:

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Experimental setup

• Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

• Benchmarks:
• TSP

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Experimental setup

• Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

• Benchmarks:
• TSP
• Multi-Commodity Network Design (MCND)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Experimental setup

• Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

• Benchmarks:
• TSP
• Multi-Commodity Network Design (MCND)
• Capacitated Warehouse Location Problem (CWLP)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Experimental setup

• Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

• Benchmarks:
• TSP
• Multi-Commodity Network Design (MCND)
• Capacitated Warehouse Location Problem (CWLP)
• Job Shop Scheduling Problem (JSSP)

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Experimental setup

• Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

• Benchmarks:
• TSP
• Multi-Commodity Network Design (MCND)
• Capacitated Warehouse Location Problem (CWLP)
• Job Shop Scheduling Problem (JSSP)

• ; drawn from synthetic generators|De | = 10, |Dv | = 2

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Experimental setup

• Solver: Gurobi 10.0.0; LLM: DeepSeek-R1

• Benchmarks:
• TSP
• Multi-Commodity Network Design (MCND)
• Capacitated Warehouse Location Problem (CWLP)
• Job Shop Scheduling Problem (JSSP)

• ; drawn from synthetic generators|De | = 10, |Dv | = 2

• Test set : public datasets; 40 hard medium/large instances eachDt

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Snapshot of results

Checkpoints 5 s 10 s 50 s 150 s 300 s OSP rate (%)
TSP 16.3 ± 24.9 15.4 ± 27.3 27.7 ± 31.1 44.4 ± 27.7 57.4 ± 26.3 100

MCND 9.4 ± 21.1 6.3 ± 22.0 11.7 ± 19.1 10.4 ± 18.4 17.1 ± 20.2 100
CWLP -6.9 ± 17.0 -8.3 ± 15.1 24.0 ± 24.9 42.5 ± 21.3 46.2 ± 41.1 100
JSSP 22.8 ± 18.3 28.8 ± 19.7 39.1 ± 22.8 34.5 ± 22.1 37.3 ± 22.0 100

Relative mean gap improvement over Dt

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Snapshot of results

• Evolution helps: initializer-only cuts have lower success

Checkpoints 5 s 10 s 50 s 150 s 300 s OSP rate (%)
TSP 16.3 ± 24.9 15.4 ± 27.3 27.7 ± 31.1 44.4 ± 27.7 57.4 ± 26.3 100

MCND 9.4 ± 21.1 6.3 ± 22.0 11.7 ± 19.1 10.4 ± 18.4 17.1 ± 20.2 100
CWLP -6.9 ± 17.0 -8.3 ± 15.1 24.0 ± 24.9 42.5 ± 21.3 46.2 ± 41.1 100
JSSP 22.8 ± 18.3 28.8 ± 19.7 39.1 ± 22.8 34.5 ± 22.1 37.3 ± 22.0 100

Relative mean gap improvement over Dt

Check (i) code rejections, (ii) OSP rejections, (iii) usefulness rejections, and (iv) fitness

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Snapshot of results

• Evolution helps: initializer-only cuts have lower success

• Mutation/crossover succeed 63–82% attempts; initializer 25.4%

Checkpoints 5 s 10 s 50 s 150 s 300 s OSP rate (%)
TSP 16.3 ± 24.9 15.4 ± 27.3 27.7 ± 31.1 44.4 ± 27.7 57.4 ± 26.3 100

MCND 9.4 ± 21.1 6.3 ± 22.0 11.7 ± 19.1 10.4 ± 18.4 17.1 ± 20.2 100
CWLP -6.9 ± 17.0 -8.3 ± 15.1 24.0 ± 24.9 42.5 ± 21.3 46.2 ± 41.1 100
JSSP 22.8 ± 18.3 28.8 ± 19.7 39.1 ± 22.8 34.5 ± 22.1 37.3 ± 22.0 100

Relative mean gap improvement over Dt

Check (i) code rejections, (ii) OSP rejections, (iii) usefulness rejections, and (iv) fitness

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Takeaways

• EvoCut: Evolutionary search automates cut discovery

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Takeaways

• EvoCut: Evolutionary search automates cut discovery

• Optimal-solution preservation and fractional separation verified empirically

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Takeaways

• EvoCut: Evolutionary search automates cut discovery

• Optimal-solution preservation and fractional separation verified empirically

• Cuts improve optimality-gap reduction throughout solve trajectory

Yazdani, Mostajabdaveh, Aref, Zhou, arXiv’25

Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search for MILP heuristics

a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways Ye, Xu, Yan, Cheng, ICML’25

LLMs for large neighborhood search (LNS)

• Solving large-scale MILPs need strong primal heuristics

Ye, Xu, Yan, Cheng, ICML’25

LLMs for large neighborhood search (LNS)

• Solving large-scale MILPs need strong primal heuristics

• LNS is effective; neighborhood choice dominates performance

Ye, Xu, Yan, Cheng, ICML’25

LLMs for large neighborhood search (LNS)

• Solving large-scale MILPs need strong primal heuristics

• LNS is effective; neighborhood choice dominates performance
• Without ML: Fischetti, Lodi, MP’03; Danna et al., MP’05; …

Ye, Xu, Yan, Cheng, ICML’25

LLMs for large neighborhood search (LNS)

• Solving large-scale MILPs need strong primal heuristics

• LNS is effective; neighborhood choice dominates performance
• Without ML: Fischetti, Lodi, MP’03; Danna et al., MP’05; …
• With ML: Song et al., NeurIPS’20; Wu et al., NeurIPS’21; Huang et al., ICML’23; …

Ye, Xu, Yan, Cheng, ICML’25

LLMs for large neighborhood search (LNS)

• Solving large-scale MILPs need strong primal heuristics

• LNS is effective; neighborhood choice dominates performance
• Without ML: Fischetti, Lodi, MP’03; Danna et al., MP’05; …
• With ML: Song et al., NeurIPS’20; Wu et al., NeurIPS’21; Huang et al., ICML’23; …

• Prior neighborhood selection methods need expertise or heavy training

Ye, Xu, Yan, Cheng, ICML’25

LLMs for large neighborhood search (LNS)

• Solving large-scale MILPs need strong primal heuristics

• LNS is effective; neighborhood choice dominates performance
• Without ML: Fischetti, Lodi, MP’03; Danna et al., MP’05; …
• With ML: Song et al., NeurIPS’20; Wu et al., NeurIPS’21; Huang et al., ICML’23; …

• Prior neighborhood selection methods need expertise or heavy training

• Propose LLM-LNS: LLM-guided neighborhood scoring for MILPs

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset
• Repair: solve resulting MILP subproblem

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset
• Repair: solve resulting MILP subproblem

• Neighborhood choice controls search power and runtime tradeoff

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset
• Repair: solve resulting MILP subproblem

• Neighborhood choice controls search power and runtime tradeoff
• Small neighborhoods: fast but limited improvement

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset
• Repair: solve resulting MILP subproblem

• Neighborhood choice controls search power and runtime tradeoff
• Small neighborhoods: fast but limited improvement
• Large neighborhoods: powerful but expensive

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset
• Repair: solve resulting MILP subproblem

For each integer variable :xi

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset
• Repair: solve resulting MILP subproblem

For each integer variable :xi

• Fix all other integer variables to current values

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset
• Repair: solve resulting MILP subproblem

For each integer variable :xi

• Fix all other integer variables to current values
• Relax ; solve resulting LPxi

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset
• Repair: solve resulting MILP subproblem

For each integer variable :xi

• Fix all other integer variables to current values
• Relax ; solve resulting LPxi

• Measure deviation from integer solution value

Ye, Xu, Yan, Cheng, ICML’25

Large neighborhood search (LNS) for MILPs

• LNS improves feasible solutions by partial variable re-optimization

• Iteration alternates between destroy and repair phases
• Destroy: fix most variables; free a selected subset
• Repair: solve resulting MILP subproblem

For each integer variable :xi

• Fix all other integer variables to current values
• Relax ; solve resulting LPxi

• Measure deviation from integer solution value
• Free/destroy variables with largest deviation

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Example prompt:

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Example prompt:

• Given feasible MILP solution, plus bounds and objective coefficients for variables

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Example prompt:

• Given feasible MILP solution, plus bounds and objective coefficients for variables
• Goal: improve the current solution using LNS

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Example prompt:

• Given feasible MILP solution, plus bounds and objective coefficients for variables
• Goal: improve the current solution using LNS
• Description of LNS

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Example prompt:

• Given feasible MILP solution, plus bounds and objective coefficients for variables
• Goal: improve the current solution using LNS
• Description of LNS
• You must score all variables for neighborhood selection decisions

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Example prompt:

• Given feasible MILP solution, plus bounds and objective coefficients for variables
• Goal: improve the current solution using LNS
• Description of LNS
• You must score all variables for neighborhood selection decisions
• Add some randomness in subset choice to avoid local optima and stagnation

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Example prompt:

• Given feasible MILP solution, plus bounds and objective coefficients for variables
• Goal: improve the current solution using LNS
• Description of LNS
• You must score all variables for neighborhood selection decisions
• Add some randomness in subset choice to avoid local optima and stagnation
• prior scoring rules: description, average fitness (objective value) over training set, codem

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Example prompt:

• Given feasible MILP solution, plus bounds and objective coefficients for variables
• Goal: improve the current solution using LNS
• Description of LNS
• You must score all variables for neighborhood selection decisions
• Add some randomness in subset choice to avoid local optima and stagnation
• prior scoring rules: description, average fitness (objective value) over training set, codem
• Create a totally different new scoring rule

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Example prompt:

• Given feasible MILP solution, plus bounds and objective coefficients for variables
• Goal: improve the current solution using LNS
• Description of LNS
• You must score all variables for neighborhood selection decisions
• Add some randomness in subset choice to avoid local optima and stagnation
• prior scoring rules: description, average fitness (objective value) over training set, codem
• Create a totally different new scoring rule

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Outer agent evolves prompts to improve inner strategies
• Example prompt:

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Outer agent evolves prompts to improve inner strategies
• Example prompt:

• Goal: solve minimization problem by using LLM-generated LNS heuristics

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Outer agent evolves prompts to improve inner strategies
• Example prompt:

• Goal: solve minimization problem by using LLM-generated LNS heuristics
• We already designed several initial prompts and collected the LLM’s resulting heuristics

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Outer agent evolves prompts to improve inner strategies
• Example prompt:

• Goal: solve minimization problem by using LLM-generated LNS heuristics
• We already designed several initial prompts and collected the LLM’s resulting heuristics
• Analyze each prompt and the objective function values achieved by LNS heuristic

Ye, Xu, Yan, Cheng, ICML’25

LLM-LNS framework: Method overview
Inner-outer agent

• Inner agent: prompted to score variables to define neighborhoods
• Select top-k scores; free (i.e., destroy) those variables in subproblem

• Outer agent evolves prompts to improve inner strategies
• Example prompt:

• Goal: solve minimization problem by using LLM-generated LNS heuristics
• We already designed several initial prompts and collected the LLM’s resulting heuristics
• Analyze each prompt and the objective function values achieved by LNS heuristic
• Create new prompt w/ different structure, motivated by insights from prompt–value pairs

Ye, Xu, Yan, Cheng, ICML’25

Experimental setup
Benchmarks

• Benchmarks:
• Set cover (SC)
• Min vertex cover (MVC)
• Max independent set (MIS)
• See paper for mixed integer knapsack set (MIKS)

Ye, Xu, Yan, Cheng, ICML’25

Experimental setup
Benchmarks

• Benchmarks:
• Set cover (SC)
• Min vertex cover (MVC)
• Max independent set (MIS)
• See paper for mixed integer knapsack set (MIKS)

• Tested on instances with (on the order of) variables/constraints106

Ye, Xu, Yan, Cheng, ICML’25

Experimental setup
Benchmarks

• Benchmarks:
• Set cover (SC)
• Min vertex cover (MVC)
• Max independent set (MIS)
• See paper for mixed integer knapsack set (MIKS)

• Tested on instances with (on the order of) variables/constraints106

• Train on small-scale instances for scalable heuristic evolution

Ye, Xu, Yan, Cheng, ICML’25

Experimental setup
Benchmarks

• Benchmarks:
• Set cover (SC)
• Min vertex cover (MVC)
• Max independent set (MIS)
• See paper for mixed integer knapsack set (MIKS)

• Tested on instances with (on the order of) variables/constraints106

• Train on small-scale instances for scalable heuristic evolution
• Training instances are roughly 100x smaller than the test instances

Ye, Xu, Yan, Cheng, ICML’25

Experimental setup
Baselines

• Random-LNS: random variable neighborhoods in LNS

Ye, Xu, Yan, Cheng, ICML’25

Experimental setup
Baselines

• Random-LNS: random variable neighborhoods in LNS

• ACP: adaptive constraint propagation guides neighborhood choice
Ye et al., AAAI’23

Ye, Xu, Yan, Cheng, ICML’25

Experimental setup
Baselines

• Random-LNS: random variable neighborhoods in LNS

• ACP: adaptive constraint propagation guides neighborhood choice
Ye et al., AAAI’23

• CL-LNS: contrastive learning selects LNS neighborhoods
Huang et al., ICML’23

Ye, Xu, Yan, Cheng, ICML’25

Experimental setup
Baselines

• Random-LNS: random variable neighborhoods in LNS

• ACP: adaptive constraint propagation guides neighborhood choice
Ye et al., AAAI’23

• CL-LNS: contrastive learning selects LNS neighborhoods
Huang et al., ICML’23

• GNN&GBDT: ML pipeline combining graphs and boosted trees
Ye et al., ICML’23

Ye, Xu, Yan, Cheng, ICML’25

Experimental setup
Baselines

• Random-LNS: random variable neighborhoods in LNS

• ACP: adaptive constraint propagation guides neighborhood choice
Ye et al., AAAI’23

• CL-LNS: contrastive learning selects LNS neighborhoods
Huang et al., ICML’23

• GNN&GBDT: ML pipeline combining graphs and boosted trees
Ye et al., ICML’23

• Light-MILPopt: lightweight ML framework for MILP optimization
Ye et al., ICLR’23

Ye, Xu, Yan, Cheng, ICML’25

Experiments
Snapshot of results

• LLM-LNS is mostly Pareto optimal (see paper for many more experiments)

(Max) set cover Min vertex cover Max independent set

Ye, Xu, Yan, Cheng, ICML’25

Takeaways

• Prior neighborhood selection methods need expertise or heavy training

Ye, Xu, Yan, Cheng, ICML’25

Takeaways

• Prior neighborhood selection methods need expertise or heavy training

• LLM-LNS: LLM-guided neighborhood scoring for MILPs

Ye, Xu, Yan, Cheng, ICML’25

Takeaways

• Prior neighborhood selection methods need expertise or heavy training

• LLM-LNS: LLM-guided neighborhood scoring for MILPs

• Inner-outer agent evolves neighborhood selection heuristics and prompts

Ye, Xu, Yan, Cheng, ICML’25

Outline

1. Background

2. LLMs for speeding up solvers
i. Solver configuration
ii. Evolutionary search for MILP heuristics

a. Background
b. Cut selection
c. Large neighborhood search
d. Diving heuristics

3. Takeaways Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv’25

Evolutionary search for diving heuristics

• Diving: quickly explores a single path (a "dive") in the search tree

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv’25

Evolutionary search for diving heuristics

• Diving: quickly explores a single path (a "dive") in the search tree
• Iteratively fixing fractional variables to integer values, solving LP relaxation

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv’25

Evolutionary search for diving heuristics

• Diving: quickly explores a single path (a "dive") in the search tree
• Iteratively fixing fractional variables to integer values, solving LP relaxation
• Goal is to find a feasible integer solution

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv’25

Evolutionary search for diving heuristics

• Diving: quickly explores a single path (a "dive") in the search tree
• Iteratively fixing fractional variables to integer values, solving LP relaxation
• Goal is to find a feasible integer solution

• Policy choices: variable order and rounding direction

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv’25

Evolutionary search for diving heuristics

• Diving: quickly explores a single path (a "dive") in the search tree
• Iteratively fixing fractional variables to integer values, solving LP relaxation
• Goal is to find a feasible integer solution

• Policy choices: variable order and rounding direction

• DHEvo aims to evolve hard instances with improving heuristics

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv’25

Evolutionary search for diving heuristics

• Diving: quickly explores a single path (a "dive") in the search tree
• Iteratively fixing fractional variables to integer values, solving LP relaxation
• Goal is to find a feasible integer solution

• Policy choices: variable order and rounding direction

• DHEvo aims to evolve hard instances with improving heuristics
• Multi-agent LLM generates MILP–heuristic pairs jointly

Zhang, Li, Li, Liu, Chen, Li, Zhong, An, Liu, arXiv’25

Outline

1. Background

2. LLMs for speeding up solvers

3. Takeaways

Takeaways

• Solver defaults are rarely optimal: instance families vary widely in structure

Takeaways

• Solver defaults are rarely optimal: instance families vary widely in structure

• Many ways to integrate ML into solvers

Takeaways

• Solver defaults are rarely optimal: instance families vary widely in structure

• Many ways to integrate ML into solvers

• LLMs can be leveraged in many ways to speed up solvers

X X X X X

X X X X X

X X

Takeaways

• Solver defaults are rarely optimal: instance families vary widely in structure

• Many ways to integrate ML into solvers

• LLMs can be leveraged in many ways to speed up solvers
• Solver configuration: LLMs as excellent information retrieval systems

X X X X X

X X X X X

X X

Takeaways

• Solver defaults are rarely optimal: instance families vary widely in structure

• Many ways to integrate ML into solvers

• LLMs can be leveraged in many ways to speed up solvers
• Solver configuration: LLMs as excellent information retrieval systems
• Evolutionary search for MILP heuristics: LLMs to explore semantic search space

• Cut selection
• Large neighborhood search
• Diving heuristics X X X X X

X X X X X

X X

Thank you! Questions?

X X X X X

X X X X X

X X

